kernel_samsung_a53x/drivers/mtd/nand/raw/arasan-nand-controller.c
Miquel Raynal f74b518187 mtd: rawnand: arasan: Ensure program page operations are successful
commit 3a4a893dbb19e229db3b753f0462520b561dee98 upstream.

The NAND core complies with the ONFI specification, which itself
mentions that after any program or erase operation, a status check
should be performed to see whether the operation was finished *and*
successful.

The NAND core offers helpers to finish a page write (sending the
"PAGE PROG" command, waiting for the NAND chip to be ready again, and
checking the operation status). But in some cases, advanced controller
drivers might want to optimize this and craft their own page write
helper to leverage additional hardware capabilities, thus not always
using the core facilities.

Some drivers, like this one, do not use the core helper to finish a page
write because the final cycles are automatically managed by the
hardware. In this case, the additional care must be taken to manually
perform the final status check.

Let's read the NAND chip status at the end of the page write helper and
return -EIO upon error.

Cc: Michal Simek <michal.simek@amd.com>
Cc: stable@vger.kernel.org
Fixes: 88ffef1b65cf ("mtd: rawnand: arasan: Support the hardware BCH ECC engine")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Acked-by: Michal Simek <michal.simek@amd.com>
Link: https://lore.kernel.org/linux-mtd/20230717194221.229778-2-miquel.raynal@bootlin.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-11-08 11:26:18 +01:00

1372 lines
35 KiB
C
Executable file

// SPDX-License-Identifier: GPL-2.0
/*
* Arasan NAND Flash Controller Driver
*
* Copyright (C) 2014 - 2020 Xilinx, Inc.
* Author:
* Miquel Raynal <miquel.raynal@bootlin.com>
* Original work (fully rewritten):
* Punnaiah Choudary Kalluri <punnaia@xilinx.com>
* Naga Sureshkumar Relli <nagasure@xilinx.com>
*/
#include <linux/bch.h>
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/rawnand.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#define PKT_REG 0x00
#define PKT_SIZE(x) FIELD_PREP(GENMASK(10, 0), (x))
#define PKT_STEPS(x) FIELD_PREP(GENMASK(23, 12), (x))
#define MEM_ADDR1_REG 0x04
#define MEM_ADDR2_REG 0x08
#define ADDR2_STRENGTH(x) FIELD_PREP(GENMASK(27, 25), (x))
#define ADDR2_CS(x) FIELD_PREP(GENMASK(31, 30), (x))
#define CMD_REG 0x0C
#define CMD_1(x) FIELD_PREP(GENMASK(7, 0), (x))
#define CMD_2(x) FIELD_PREP(GENMASK(15, 8), (x))
#define CMD_PAGE_SIZE(x) FIELD_PREP(GENMASK(25, 23), (x))
#define CMD_DMA_ENABLE BIT(27)
#define CMD_NADDRS(x) FIELD_PREP(GENMASK(30, 28), (x))
#define CMD_ECC_ENABLE BIT(31)
#define PROG_REG 0x10
#define PROG_PGRD BIT(0)
#define PROG_ERASE BIT(2)
#define PROG_STATUS BIT(3)
#define PROG_PGPROG BIT(4)
#define PROG_RDID BIT(6)
#define PROG_RDPARAM BIT(7)
#define PROG_RST BIT(8)
#define PROG_GET_FEATURE BIT(9)
#define PROG_SET_FEATURE BIT(10)
#define INTR_STS_EN_REG 0x14
#define INTR_SIG_EN_REG 0x18
#define INTR_STS_REG 0x1C
#define WRITE_READY BIT(0)
#define READ_READY BIT(1)
#define XFER_COMPLETE BIT(2)
#define DMA_BOUNDARY BIT(6)
#define EVENT_MASK GENMASK(7, 0)
#define READY_STS_REG 0x20
#define DMA_ADDR0_REG 0x50
#define DMA_ADDR1_REG 0x24
#define FLASH_STS_REG 0x28
#define DATA_PORT_REG 0x30
#define ECC_CONF_REG 0x34
#define ECC_CONF_COL(x) FIELD_PREP(GENMASK(15, 0), (x))
#define ECC_CONF_LEN(x) FIELD_PREP(GENMASK(26, 16), (x))
#define ECC_CONF_BCH_EN BIT(27)
#define ECC_ERR_CNT_REG 0x38
#define GET_PKT_ERR_CNT(x) FIELD_GET(GENMASK(7, 0), (x))
#define GET_PAGE_ERR_CNT(x) FIELD_GET(GENMASK(16, 8), (x))
#define ECC_SP_REG 0x3C
#define ECC_SP_CMD1(x) FIELD_PREP(GENMASK(7, 0), (x))
#define ECC_SP_CMD2(x) FIELD_PREP(GENMASK(15, 8), (x))
#define ECC_SP_ADDRS(x) FIELD_PREP(GENMASK(30, 28), (x))
#define ECC_1ERR_CNT_REG 0x40
#define ECC_2ERR_CNT_REG 0x44
#define DATA_INTERFACE_REG 0x6C
#define DIFACE_SDR_MODE(x) FIELD_PREP(GENMASK(2, 0), (x))
#define DIFACE_DDR_MODE(x) FIELD_PREP(GENMASK(5, 3), (x))
#define DIFACE_SDR 0
#define DIFACE_NVDDR BIT(9)
#define ANFC_MAX_CS 2
#define ANFC_DFLT_TIMEOUT_US 1000000
#define ANFC_MAX_CHUNK_SIZE SZ_1M
#define ANFC_MAX_PARAM_SIZE SZ_4K
#define ANFC_MAX_STEPS SZ_2K
#define ANFC_MAX_PKT_SIZE (SZ_2K - 1)
#define ANFC_MAX_ADDR_CYC 5U
#define ANFC_RSVD_ECC_BYTES 21
#define ANFC_XLNX_SDR_DFLT_CORE_CLK 100000000
#define ANFC_XLNX_SDR_HS_CORE_CLK 80000000
/**
* struct anfc_op - Defines how to execute an operation
* @pkt_reg: Packet register
* @addr1_reg: Memory address 1 register
* @addr2_reg: Memory address 2 register
* @cmd_reg: Command register
* @prog_reg: Program register
* @steps: Number of "packets" to read/write
* @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
* @len: Data transfer length
* @read: Data transfer direction from the controller point of view
*/
struct anfc_op {
u32 pkt_reg;
u32 addr1_reg;
u32 addr2_reg;
u32 cmd_reg;
u32 prog_reg;
int steps;
unsigned int rdy_timeout_ms;
unsigned int len;
bool read;
u8 *buf;
};
/**
* struct anand - Defines the NAND chip related information
* @node: Used to store NAND chips into a list
* @chip: NAND chip information structure
* @cs: Chip select line
* @rb: Ready-busy line
* @page_sz: Register value of the page_sz field to use
* @clk: Expected clock frequency to use
* @timings: Data interface timing mode to use
* @ecc_conf: Hardware ECC configuration value
* @strength: Register value of the ECC strength
* @raddr_cycles: Row address cycle information
* @caddr_cycles: Column address cycle information
* @ecc_bits: Exact number of ECC bits per syndrome
* @ecc_total: Total number of ECC bytes
* @errloc: Array of errors located with soft BCH
* @hw_ecc: Buffer to store syndromes computed by hardware
* @bch: BCH structure
*/
struct anand {
struct list_head node;
struct nand_chip chip;
unsigned int cs;
unsigned int rb;
unsigned int page_sz;
unsigned long clk;
u32 timings;
u32 ecc_conf;
u32 strength;
u16 raddr_cycles;
u16 caddr_cycles;
unsigned int ecc_bits;
unsigned int ecc_total;
unsigned int *errloc;
u8 *hw_ecc;
struct bch_control *bch;
};
/**
* struct arasan_nfc - Defines the Arasan NAND flash controller driver instance
* @dev: Pointer to the device structure
* @base: Remapped register area
* @controller_clk: Pointer to the system clock
* @bus_clk: Pointer to the flash clock
* @controller: Base controller structure
* @chips: List of all NAND chips attached to the controller
* @assigned_cs: Bitmask describing already assigned CS lines
* @cur_clk: Current clock rate
*/
struct arasan_nfc {
struct device *dev;
void __iomem *base;
struct clk *controller_clk;
struct clk *bus_clk;
struct nand_controller controller;
struct list_head chips;
unsigned long assigned_cs;
unsigned int cur_clk;
};
static struct anand *to_anand(struct nand_chip *nand)
{
return container_of(nand, struct anand, chip);
}
static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
{
return container_of(ctrl, struct arasan_nfc, controller);
}
static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
{
u32 val;
int ret;
ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
val & event, 0,
ANFC_DFLT_TIMEOUT_US);
if (ret) {
dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
return -ETIMEDOUT;
}
writel_relaxed(event, nfc->base + INTR_STS_REG);
return 0;
}
static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
unsigned int timeout_ms)
{
struct anand *anand = to_anand(chip);
u32 val;
int ret;
/* There is no R/B interrupt, we must poll a register */
ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
val & BIT(anand->rb),
1, timeout_ms * 1000);
if (ret) {
dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
readl_relaxed(nfc->base + READY_STS_REG));
return -ETIMEDOUT;
}
return 0;
}
static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
{
writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
}
static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
unsigned int *pktsize)
{
unsigned int nb, sz;
for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
sz = len / nb;
if (sz <= ANFC_MAX_PKT_SIZE)
break;
}
if (sz * nb != len)
return -ENOTSUPP;
if (steps)
*steps = nb;
if (pktsize)
*pktsize = sz;
return 0;
}
static int anfc_select_target(struct nand_chip *chip, int target)
{
struct anand *anand = to_anand(chip);
struct arasan_nfc *nfc = to_anfc(chip->controller);
int ret;
/* Update the controller timings and the potential ECC configuration */
writel_relaxed(anand->timings, nfc->base + DATA_INTERFACE_REG);
/* Update clock frequency */
if (nfc->cur_clk != anand->clk) {
clk_disable_unprepare(nfc->bus_clk);
ret = clk_set_rate(nfc->bus_clk, anand->clk);
if (ret) {
dev_err(nfc->dev, "Failed to change clock rate\n");
return ret;
}
ret = clk_prepare_enable(nfc->bus_clk);
if (ret) {
dev_err(nfc->dev,
"Failed to re-enable the bus clock\n");
return ret;
}
nfc->cur_clk = anand->clk;
}
return 0;
}
/*
* When using the embedded hardware ECC engine, the controller is in charge of
* feeding the engine with, first, the ECC residue present in the data array.
* A typical read operation is:
* 1/ Assert the read operation by sending the relevant command/address cycles
* but targeting the column of the first ECC bytes in the OOB area instead of
* the main data directly.
* 2/ After having read the relevant number of ECC bytes, the controller uses
* the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command
* Register" to move the pointer back at the beginning of the main data.
* 3/ It will read the content of the main area for a given size (pktsize) and
* will feed the ECC engine with this buffer again.
* 4/ The ECC engine derives the ECC bytes for the given data and compare them
* with the ones already received. It eventually trigger status flags and
* then set the "Buffer Read Ready" flag.
* 5/ The corrected data is then available for reading from the data port
* register.
*
* The hardware BCH ECC engine is known to be inconstent in BCH mode and never
* reports uncorrectable errors. Because of this bug, we have to use the
* software BCH implementation in the read path.
*/
static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct arasan_nfc *nfc = to_anfc(chip->controller);
struct mtd_info *mtd = nand_to_mtd(chip);
struct anand *anand = to_anand(chip);
unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
unsigned int max_bitflips = 0;
dma_addr_t dma_addr;
int step, ret;
struct anfc_op nfc_op = {
.pkt_reg =
PKT_SIZE(chip->ecc.size) |
PKT_STEPS(chip->ecc.steps),
.addr1_reg =
(page & 0xFF) << (8 * (anand->caddr_cycles)) |
(((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
.addr2_reg =
((page >> 16) & 0xFF) |
ADDR2_STRENGTH(anand->strength) |
ADDR2_CS(anand->cs),
.cmd_reg =
CMD_1(NAND_CMD_READ0) |
CMD_2(NAND_CMD_READSTART) |
CMD_PAGE_SIZE(anand->page_sz) |
CMD_DMA_ENABLE |
CMD_NADDRS(anand->caddr_cycles +
anand->raddr_cycles),
.prog_reg = PROG_PGRD,
};
dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
if (dma_mapping_error(nfc->dev, dma_addr)) {
dev_err(nfc->dev, "Buffer mapping error");
return -EIO;
}
writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
anfc_trigger_op(nfc, &nfc_op);
ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
if (ret) {
dev_err(nfc->dev, "Error reading page %d\n", page);
return ret;
}
/* Store the raw OOB bytes as well */
ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi,
mtd->oobsize, 0);
if (ret)
return ret;
/*
* For each step, compute by softare the BCH syndrome over the raw data.
* Compare the theoretical amount of errors and compare with the
* hardware engine feedback.
*/
for (step = 0; step < chip->ecc.steps; step++) {
u8 *raw_buf = &buf[step * chip->ecc.size];
unsigned int bit, byte;
int bf, i;
/* Extract the syndrome, it is not necessarily aligned */
memset(anand->hw_ecc, 0, chip->ecc.bytes);
nand_extract_bits(anand->hw_ecc, 0,
&chip->oob_poi[mtd->oobsize - anand->ecc_total],
anand->ecc_bits * step, anand->ecc_bits);
bf = bch_decode(anand->bch, raw_buf, chip->ecc.size,
anand->hw_ecc, NULL, NULL, anand->errloc);
if (!bf) {
continue;
} else if (bf > 0) {
for (i = 0; i < bf; i++) {
/* Only correct the data, not the syndrome */
if (anand->errloc[i] < (chip->ecc.size * 8)) {
bit = BIT(anand->errloc[i] & 7);
byte = anand->errloc[i] >> 3;
raw_buf[byte] ^= bit;
}
}
mtd->ecc_stats.corrected += bf;
max_bitflips = max_t(unsigned int, max_bitflips, bf);
continue;
}
bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size,
NULL, 0, NULL, 0,
chip->ecc.strength);
if (bf > 0) {
mtd->ecc_stats.corrected += bf;
max_bitflips = max_t(unsigned int, max_bitflips, bf);
memset(raw_buf, 0xFF, chip->ecc.size);
} else if (bf < 0) {
mtd->ecc_stats.failed++;
}
}
return 0;
}
static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
int ret;
ret = anfc_select_target(chip, chip->cur_cs);
if (ret)
return ret;
return anfc_read_page_hw_ecc(chip, buf, oob_required, page);
};
static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
struct anand *anand = to_anand(chip);
struct arasan_nfc *nfc = to_anfc(chip->controller);
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
dma_addr_t dma_addr;
u8 status;
int ret;
struct anfc_op nfc_op = {
.pkt_reg =
PKT_SIZE(chip->ecc.size) |
PKT_STEPS(chip->ecc.steps),
.addr1_reg =
(page & 0xFF) << (8 * (anand->caddr_cycles)) |
(((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
.addr2_reg =
((page >> 16) & 0xFF) |
ADDR2_STRENGTH(anand->strength) |
ADDR2_CS(anand->cs),
.cmd_reg =
CMD_1(NAND_CMD_SEQIN) |
CMD_2(NAND_CMD_PAGEPROG) |
CMD_PAGE_SIZE(anand->page_sz) |
CMD_DMA_ENABLE |
CMD_NADDRS(anand->caddr_cycles +
anand->raddr_cycles) |
CMD_ECC_ENABLE,
.prog_reg = PROG_PGPROG,
};
writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
ECC_SP_ADDRS(anand->caddr_cycles),
nfc->base + ECC_SP_REG);
dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
if (dma_mapping_error(nfc->dev, dma_addr)) {
dev_err(nfc->dev, "Buffer mapping error");
return -EIO;
}
writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
anfc_trigger_op(nfc, &nfc_op);
ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
if (ret) {
dev_err(nfc->dev, "Error writing page %d\n", page);
return ret;
}
/* Spare data is not protected */
if (oob_required) {
ret = nand_write_oob_std(chip, page);
if (ret)
return ret;
}
/* Check write status on the chip side */
ret = nand_status_op(chip, &status);
if (ret)
return ret;
if (status & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
int ret;
ret = anfc_select_target(chip, chip->cur_cs);
if (ret)
return ret;
return anfc_write_page_hw_ecc(chip, buf, oob_required, page);
};
/* NAND framework ->exec_op() hooks and related helpers */
static int anfc_parse_instructions(struct nand_chip *chip,
const struct nand_subop *subop,
struct anfc_op *nfc_op)
{
struct anand *anand = to_anand(chip);
const struct nand_op_instr *instr = NULL;
bool first_cmd = true;
unsigned int op_id;
int ret, i;
memset(nfc_op, 0, sizeof(*nfc_op));
nfc_op->addr2_reg = ADDR2_CS(anand->cs);
nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);
for (op_id = 0; op_id < subop->ninstrs; op_id++) {
unsigned int offset, naddrs, pktsize;
const u8 *addrs;
u8 *buf;
instr = &subop->instrs[op_id];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
if (first_cmd)
nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
else
nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);
first_cmd = false;
break;
case NAND_OP_ADDR_INSTR:
offset = nand_subop_get_addr_start_off(subop, op_id);
naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
addrs = &instr->ctx.addr.addrs[offset];
nfc_op->cmd_reg |= CMD_NADDRS(naddrs);
for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
if (i < 4)
nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
else
nfc_op->addr2_reg |= addrs[i];
}
break;
case NAND_OP_DATA_IN_INSTR:
nfc_op->read = true;
fallthrough;
case NAND_OP_DATA_OUT_INSTR:
offset = nand_subop_get_data_start_off(subop, op_id);
buf = instr->ctx.data.buf.in;
nfc_op->buf = &buf[offset];
nfc_op->len = nand_subop_get_data_len(subop, op_id);
ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
&pktsize);
if (ret)
return ret;
/*
* Number of DATA cycles must be aligned on 4, this
* means the controller might read/write more than
* requested. This is harmless most of the time as extra
* DATA are discarded in the write path and read pointer
* adjusted in the read path.
*
* FIXME: The core should mark operations where
* reading/writing more is allowed so the exec_op()
* implementation can take the right decision when the
* alignment constraint is not met: adjust the number of
* DATA cycles when it's allowed, reject the operation
* otherwise.
*/
nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
PKT_STEPS(nfc_op->steps);
break;
case NAND_OP_WAITRDY_INSTR:
nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
break;
}
}
return 0;
}
static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
{
unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
unsigned int last_len = nfc_op->len % 4;
unsigned int offset, dir;
u8 *buf = nfc_op->buf;
int ret, i;
for (i = 0; i < nfc_op->steps; i++) {
dir = nfc_op->read ? READ_READY : WRITE_READY;
ret = anfc_wait_for_event(nfc, dir);
if (ret) {
dev_err(nfc->dev, "PIO %s ready signal not received\n",
nfc_op->read ? "Read" : "Write");
return ret;
}
offset = i * (dwords * 4);
if (nfc_op->read)
ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
dwords);
else
iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
dwords);
}
if (last_len) {
u32 remainder;
offset = nfc_op->len - last_len;
if (nfc_op->read) {
remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
memcpy(&buf[offset], &remainder, last_len);
} else {
memcpy(&remainder, &buf[offset], last_len);
writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
}
}
return anfc_wait_for_event(nfc, XFER_COMPLETE);
}
static int anfc_misc_data_type_exec(struct nand_chip *chip,
const struct nand_subop *subop,
u32 prog_reg)
{
struct arasan_nfc *nfc = to_anfc(chip->controller);
struct anfc_op nfc_op = {};
int ret;
ret = anfc_parse_instructions(chip, subop, &nfc_op);
if (ret)
return ret;
nfc_op.prog_reg = prog_reg;
anfc_trigger_op(nfc, &nfc_op);
if (nfc_op.rdy_timeout_ms) {
ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
if (ret)
return ret;
}
return anfc_rw_pio_op(nfc, &nfc_op);
}
static int anfc_param_read_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
}
static int anfc_data_read_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
return anfc_misc_data_type_exec(chip, subop, PROG_PGRD);
}
static int anfc_param_write_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
}
static int anfc_data_write_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
}
static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
const struct nand_subop *subop,
u32 prog_reg)
{
struct arasan_nfc *nfc = to_anfc(chip->controller);
struct anfc_op nfc_op = {};
int ret;
ret = anfc_parse_instructions(chip, subop, &nfc_op);
if (ret)
return ret;
nfc_op.prog_reg = prog_reg;
anfc_trigger_op(nfc, &nfc_op);
ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
if (ret)
return ret;
if (nfc_op.rdy_timeout_ms)
ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
return ret;
}
static int anfc_status_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct arasan_nfc *nfc = to_anfc(chip->controller);
u32 tmp;
int ret;
/* See anfc_check_op() for details about this constraint */
if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
return -ENOTSUPP;
ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
if (ret)
return ret;
tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);
return 0;
}
static int anfc_reset_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
}
static int anfc_erase_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
}
static int anfc_wait_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct arasan_nfc *nfc = to_anfc(chip->controller);
struct anfc_op nfc_op = {};
int ret;
ret = anfc_parse_instructions(chip, subop, &nfc_op);
if (ret)
return ret;
return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
}
static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
NAND_OP_PARSER_PATTERN(
anfc_param_read_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
NAND_OP_PARSER_PATTERN(
anfc_param_write_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
NAND_OP_PARSER_PATTERN(
anfc_data_read_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
NAND_OP_PARSER_PATTERN(
anfc_data_write_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
NAND_OP_PARSER_PAT_CMD_ELEM(false)),
NAND_OP_PARSER_PATTERN(
anfc_reset_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
NAND_OP_PARSER_PATTERN(
anfc_erase_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
NAND_OP_PARSER_PATTERN(
anfc_status_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
NAND_OP_PARSER_PATTERN(
anfc_wait_type_exec,
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
);
static int anfc_check_op(struct nand_chip *chip,
const struct nand_operation *op)
{
const struct nand_op_instr *instr;
int op_id;
/*
* The controller abstracts all the NAND operations and do not support
* data only operations.
*
* TODO: The nand_op_parser framework should be extended to
* support custom checks on DATA instructions.
*/
for (op_id = 0; op_id < op->ninstrs; op_id++) {
instr = &op->instrs[op_id];
switch (instr->type) {
case NAND_OP_ADDR_INSTR:
if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
return -ENOTSUPP;
break;
case NAND_OP_DATA_IN_INSTR:
case NAND_OP_DATA_OUT_INSTR:
if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
return -ENOTSUPP;
if (anfc_pkt_len_config(instr->ctx.data.len, 0, 0))
return -ENOTSUPP;
break;
default:
break;
}
}
/*
* The controller does not allow to proceed with a CMD+DATA_IN cycle
* manually on the bus by reading data from the data register. Instead,
* the controller abstract a status read operation with its own status
* register after ordering a read status operation. Hence, we cannot
* support any CMD+DATA_IN operation other than a READ STATUS.
*
* TODO: The nand_op_parser() framework should be extended to describe
* fixed patterns instead of open-coding this check here.
*/
if (op->ninstrs == 2 &&
op->instrs[0].type == NAND_OP_CMD_INSTR &&
op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
return -ENOTSUPP;
return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
}
static int anfc_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
int ret;
if (check_only)
return anfc_check_op(chip, op);
ret = anfc_select_target(chip, op->cs);
if (ret)
return ret;
return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
}
static int anfc_setup_interface(struct nand_chip *chip, int target,
const struct nand_interface_config *conf)
{
struct anand *anand = to_anand(chip);
struct arasan_nfc *nfc = to_anfc(chip->controller);
struct device_node *np = nfc->dev->of_node;
const struct nand_sdr_timings *sdr;
const struct nand_nvddr_timings *nvddr;
if (nand_interface_is_nvddr(conf)) {
nvddr = nand_get_nvddr_timings(conf);
if (IS_ERR(nvddr))
return PTR_ERR(nvddr);
/*
* The controller only supports data payload requests which are
* a multiple of 4. In practice, most data accesses are 4-byte
* aligned and this is not an issue. However, rounding up will
* simply be refused by the controller if we reached the end of
* the device *and* we are using the NV-DDR interface(!). In
* this situation, unaligned data requests ending at the device
* boundary will confuse the controller and cannot be performed.
*
* This is something that happens in nand_read_subpage() when
* selecting software ECC support and must be avoided.
*/
if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT)
return -ENOTSUPP;
} else {
sdr = nand_get_sdr_timings(conf);
if (IS_ERR(sdr))
return PTR_ERR(sdr);
}
if (target < 0)
return 0;
if (nand_interface_is_sdr(conf))
anand->timings = DIFACE_SDR |
DIFACE_SDR_MODE(conf->timings.mode);
else
anand->timings = DIFACE_NVDDR |
DIFACE_DDR_MODE(conf->timings.mode);
if (nand_interface_is_sdr(conf)) {
anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
} else {
/* ONFI timings are defined in picoseconds */
anand->clk = div_u64((u64)NSEC_PER_SEC * 1000,
conf->timings.nvddr.tCK_min);
}
/*
* Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work
* with f > 90MHz (default clock is 100MHz) but signals are unstable
* with higher modes. Hence we decrease a little bit the clock rate to
* 80MHz when using SDR modes 2-5 with this SoC.
*/
if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
nand_interface_is_sdr(conf) && conf->timings.mode >= 2)
anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;
return 0;
}
static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
{
unsigned int bch_gf_mag, ecc_bits;
switch (step_size) {
case SZ_512:
bch_gf_mag = 13;
break;
case SZ_1K:
bch_gf_mag = 14;
break;
default:
return -EINVAL;
}
ecc_bits = bch_gf_mag * strength;
return DIV_ROUND_UP(ecc_bits, 8);
}
static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};
static const int anfc_hw_ecc_1024_strengths[] = {24};
static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
{
.stepsize = SZ_512,
.strengths = anfc_hw_ecc_512_strengths,
.nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
},
{
.stepsize = SZ_1K,
.strengths = anfc_hw_ecc_1024_strengths,
.nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
},
};
static const struct nand_ecc_caps anfc_hw_ecc_caps = {
.stepinfos = anfc_hw_ecc_step_infos,
.nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
.calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
};
static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
struct nand_chip *chip)
{
struct anand *anand = to_anand(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
int ret;
switch (mtd->writesize) {
case SZ_512:
case SZ_2K:
case SZ_4K:
case SZ_8K:
case SZ_16K:
break;
default:
dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
return -EINVAL;
}
ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize);
if (ret)
return ret;
switch (ecc->strength) {
case 12:
anand->strength = 0x1;
break;
case 8:
anand->strength = 0x2;
break;
case 4:
anand->strength = 0x3;
break;
case 24:
anand->strength = 0x4;
break;
default:
dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
return -EINVAL;
}
switch (ecc->size) {
case SZ_512:
bch_gf_mag = 13;
bch_prim_poly = 0x201b;
break;
case SZ_1K:
bch_gf_mag = 14;
bch_prim_poly = 0x4443;
break;
default:
dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
return -EINVAL;
}
mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
ecc->steps = mtd->writesize / ecc->size;
ecc->algo = NAND_ECC_ALGO_BCH;
anand->ecc_bits = bch_gf_mag * ecc->strength;
ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
ECC_CONF_LEN(anand->ecc_total) |
ECC_CONF_BCH_EN;
anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength,
sizeof(*anand->errloc), GFP_KERNEL);
if (!anand->errloc)
return -ENOMEM;
anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL);
if (!anand->hw_ecc)
return -ENOMEM;
/* Enforce bit swapping to fit the hardware */
anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true);
if (!anand->bch)
return -EINVAL;
ecc->read_page = anfc_sel_read_page_hw_ecc;
ecc->write_page = anfc_sel_write_page_hw_ecc;
return 0;
}
static int anfc_attach_chip(struct nand_chip *chip)
{
struct anand *anand = to_anand(chip);
struct arasan_nfc *nfc = to_anfc(chip->controller);
struct mtd_info *mtd = nand_to_mtd(chip);
int ret = 0;
if (mtd->writesize <= SZ_512)
anand->caddr_cycles = 1;
else
anand->caddr_cycles = 2;
if (chip->options & NAND_ROW_ADDR_3)
anand->raddr_cycles = 3;
else
anand->raddr_cycles = 2;
switch (mtd->writesize) {
case 512:
anand->page_sz = 0;
break;
case 1024:
anand->page_sz = 5;
break;
case 2048:
anand->page_sz = 1;
break;
case 4096:
anand->page_sz = 2;
break;
case 8192:
anand->page_sz = 3;
break;
case 16384:
anand->page_sz = 4;
break;
default:
return -EINVAL;
}
/* These hooks are valid for all ECC providers */
chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
switch (chip->ecc.engine_type) {
case NAND_ECC_ENGINE_TYPE_NONE:
case NAND_ECC_ENGINE_TYPE_SOFT:
case NAND_ECC_ENGINE_TYPE_ON_DIE:
break;
case NAND_ECC_ENGINE_TYPE_ON_HOST:
ret = anfc_init_hw_ecc_controller(nfc, chip);
break;
default:
dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
chip->ecc.engine_type);
return -EINVAL;
}
return ret;
}
static void anfc_detach_chip(struct nand_chip *chip)
{
struct anand *anand = to_anand(chip);
if (anand->bch)
bch_free(anand->bch);
}
static const struct nand_controller_ops anfc_ops = {
.exec_op = anfc_exec_op,
.setup_interface = anfc_setup_interface,
.attach_chip = anfc_attach_chip,
.detach_chip = anfc_detach_chip,
};
static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
{
struct anand *anand;
struct nand_chip *chip;
struct mtd_info *mtd;
int cs, rb, ret;
anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
if (!anand)
return -ENOMEM;
/* We do not support multiple CS per chip yet */
if (of_property_count_elems_of_size(np, "reg", sizeof(u32)) != 1) {
dev_err(nfc->dev, "Invalid reg property\n");
return -EINVAL;
}
ret = of_property_read_u32(np, "reg", &cs);
if (ret)
return ret;
ret = of_property_read_u32(np, "nand-rb", &rb);
if (ret)
return ret;
if (cs >= ANFC_MAX_CS || rb >= ANFC_MAX_CS) {
dev_err(nfc->dev, "Wrong CS %d or RB %d\n", cs, rb);
return -EINVAL;
}
if (test_and_set_bit(cs, &nfc->assigned_cs)) {
dev_err(nfc->dev, "Already assigned CS %d\n", cs);
return -EINVAL;
}
anand->cs = cs;
anand->rb = rb;
chip = &anand->chip;
mtd = nand_to_mtd(chip);
mtd->dev.parent = nfc->dev;
chip->controller = &nfc->controller;
chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
NAND_USES_DMA;
nand_set_flash_node(chip, np);
if (!mtd->name) {
dev_err(nfc->dev, "NAND label property is mandatory\n");
return -EINVAL;
}
ret = nand_scan(chip, 1);
if (ret) {
dev_err(nfc->dev, "Scan operation failed\n");
return ret;
}
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
nand_cleanup(chip);
return ret;
}
list_add_tail(&anand->node, &nfc->chips);
return 0;
}
static void anfc_chips_cleanup(struct arasan_nfc *nfc)
{
struct anand *anand, *tmp;
struct nand_chip *chip;
int ret;
list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
chip = &anand->chip;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
list_del(&anand->node);
}
}
static int anfc_chips_init(struct arasan_nfc *nfc)
{
struct device_node *np = nfc->dev->of_node, *nand_np;
int nchips = of_get_child_count(np);
int ret;
if (!nchips || nchips > ANFC_MAX_CS) {
dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
nchips);
return -EINVAL;
}
for_each_child_of_node(np, nand_np) {
ret = anfc_chip_init(nfc, nand_np);
if (ret) {
of_node_put(nand_np);
anfc_chips_cleanup(nfc);
break;
}
}
return ret;
}
static void anfc_reset(struct arasan_nfc *nfc)
{
/* Disable interrupt signals */
writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);
/* Enable interrupt status */
writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);
}
static int anfc_probe(struct platform_device *pdev)
{
struct arasan_nfc *nfc;
int ret;
nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
if (!nfc)
return -ENOMEM;
nfc->dev = &pdev->dev;
nand_controller_init(&nfc->controller);
nfc->controller.ops = &anfc_ops;
INIT_LIST_HEAD(&nfc->chips);
nfc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(nfc->base))
return PTR_ERR(nfc->base);
anfc_reset(nfc);
nfc->controller_clk = devm_clk_get(&pdev->dev, "controller");
if (IS_ERR(nfc->controller_clk))
return PTR_ERR(nfc->controller_clk);
nfc->bus_clk = devm_clk_get(&pdev->dev, "bus");
if (IS_ERR(nfc->bus_clk))
return PTR_ERR(nfc->bus_clk);
ret = clk_prepare_enable(nfc->controller_clk);
if (ret)
return ret;
ret = clk_prepare_enable(nfc->bus_clk);
if (ret)
goto disable_controller_clk;
ret = anfc_chips_init(nfc);
if (ret)
goto disable_bus_clk;
platform_set_drvdata(pdev, nfc);
return 0;
disable_bus_clk:
clk_disable_unprepare(nfc->bus_clk);
disable_controller_clk:
clk_disable_unprepare(nfc->controller_clk);
return ret;
}
static int anfc_remove(struct platform_device *pdev)
{
struct arasan_nfc *nfc = platform_get_drvdata(pdev);
anfc_chips_cleanup(nfc);
clk_disable_unprepare(nfc->bus_clk);
clk_disable_unprepare(nfc->controller_clk);
return 0;
}
static const struct of_device_id anfc_ids[] = {
{
.compatible = "xlnx,zynqmp-nand-controller",
},
{
.compatible = "arasan,nfc-v3p10",
},
{}
};
MODULE_DEVICE_TABLE(of, anfc_ids);
static struct platform_driver anfc_driver = {
.driver = {
.name = "arasan-nand-controller",
.of_match_table = anfc_ids,
},
.probe = anfc_probe,
.remove = anfc_remove,
};
module_platform_driver(anfc_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");