kernel_samsung_a53x/mm/hpa.c
2024-06-15 16:02:09 -03:00

518 lines
12 KiB
C
Executable file

// SPDX-License-Identifier: GPL-2.0
/*
* High-order Page Allocator
* Does best efforts to allocate required high-order pages.
*
* Copyright (C) 2021 Samsung Electronics Co., Ltd.
*/
#define pr_fmt(fmt) "HPA: " fmt
#include <linux/list.h>
#include <linux/memblock.h>
#include <linux/mm.h>
#include <linux/mm_types.h>
#include <linux/mmzone.h>
#include <linux/migrate.h>
#include <linux/memcontrol.h>
#include <linux/page-isolation.h>
#include <linux/mm_inline.h>
#include <linux/swap.h>
#include <linux/scatterlist.h>
#include <linux/debugfs.h>
#include <linux/vmalloc.h>
#include <linux/device.h>
#include <linux/oom.h>
#include <linux/sched/task.h>
#include <linux/sched/mm.h>
#include <linux/random.h>
#include "internal.h"
#define MAX_SCAN_TRY (2)
#define HPA_MIN_OOMADJ 100
static bool oom_unkillable_task(struct task_struct *p)
{
if (is_global_init(p))
return true;
if (p->flags & PF_KTHREAD)
return true;
return false;
}
static bool oom_skip_task(struct task_struct *p, int selected_adj)
{
if (same_thread_group(p, current))
return true;
if (p->signal->oom_score_adj <= HPA_MIN_OOMADJ)
return true;
if ((p->signal->oom_score_adj < selected_adj) &&
(selected_adj <= OOM_SCORE_ADJ_MAX))
return true;
if (test_bit(MMF_OOM_SKIP, &p->mm->flags))
return true;
if (in_vfork(p))
return true;
if (p->state & TASK_UNINTERRUPTIBLE)
return true;
return false;
}
static int hpa_killer(void)
{
struct task_struct *tsk, *p;
struct task_struct *selected = NULL;
unsigned long selected_tasksize = 0;
int selected_adj = OOM_SCORE_ADJ_MAX + 1;
rcu_read_lock();
for_each_process(tsk) {
int tasksize;
int current_adj;
if (oom_unkillable_task(tsk))
continue;
p = find_lock_task_mm(tsk);
if (!p)
continue;
if (oom_skip_task(p, selected_adj)) {
task_unlock(p);
continue;
}
tasksize = get_mm_rss(p->mm);
tasksize += get_mm_counter(p->mm, MM_SWAPENTS);
tasksize += mm_pgtables_bytes(p->mm) / PAGE_SIZE;
current_adj = p->signal->oom_score_adj;
task_unlock(p);
if (selected &&
(current_adj == selected_adj) &&
(tasksize <= selected_tasksize))
continue;
if (selected)
put_task_struct(selected);
selected = p;
selected_tasksize = tasksize;
selected_adj = current_adj;
get_task_struct(selected);
}
rcu_read_unlock();
if (!selected) {
pr_err("no killable task\n");
return -ESRCH;
}
pr_info("Killing '%s' (%d), adj %hd to free %lukB\n",
selected->comm, task_pid_nr(selected), selected_adj,
selected_tasksize * (PAGE_SIZE / SZ_1K));
do_send_sig_info(SIGKILL, SEND_SIG_PRIV, selected, true);
put_task_struct(selected);
return 0;
}
enum hpa_reclaim_status {
HPA_SKIP_CMA_OR_ISOLATE_MIGRATETYPE,
HPA_SKIP_INVALID_PFN,
HPA_SKIP_RESERVED,
HPA_SKIP_ANON_PINNED,
HPA_SKIP_COMPOUND,
HPA_SKIP_UNMOVABLE,
HPA_STEAL_FAIL_EBUSY,
HPA_STEAL_FAIL,
HPA_STEAL_SUCCESS,
NUM_HPA_RECLAIM_STATS,
};
const char * const hpa_reclaim_status_text[] = {
"skip cma or isolate migratetype",
"skip invalid pfn",
"skip reserved page",
"skip anonmyous pinned page",
"skip compound page",
"skip unmovable page",
"reclaim fail (-EBUSY)",
"reclaim fail",
"reclaim success",
};
static bool is_movable_chunk(unsigned long start_pfn, unsigned int order, unsigned int *status)
{
unsigned long i, end_pfn = start_pfn + (1 << order);
struct page *page;
for (i = start_pfn; i < end_pfn; i++) {
page = pfn_to_online_page(i);
if (!page) {
status[HPA_SKIP_INVALID_PFN]++;
return false;
}
if (PageBuddy(page)) {
unsigned long freepage_order = buddy_order_unsafe(page);
if (freepage_order > 0 && freepage_order < MAX_ORDER)
i += (1UL << freepage_order) - 1;
continue;
}
if (PageCompound(page)) {
status[HPA_SKIP_COMPOUND]++;
return false;
}
if (PageReserved(page)) {
status[HPA_SKIP_RESERVED]++;
return false;
}
if (!PageLRU(page) && !__PageMovable(page)) {
status[HPA_SKIP_UNMOVABLE]++;
return false;
}
if (!page_mapping(page) && page_count(page) > page_mapcount(page)) {
status[HPA_SKIP_ANON_PINNED]++;
return false;
}
}
return true;
}
static int get_exception_of_page(phys_addr_t phys,
phys_addr_t exception_areas[][2],
int nr_exception)
{
int i;
for (i = 0; i < nr_exception; i++)
if ((exception_areas[i][0] <= phys) &&
(phys <= exception_areas[i][1]))
return i;
return -1;
}
static inline void expand(struct zone *zone, struct page *page,
int low, int high, struct free_area *area,
int migratetype)
{
unsigned long size = 1 << high;
while (high > low) {
area--;
high--;
size >>= 1;
list_add(&page[size].lru, &area->free_list[migratetype]);
area->nr_free++;
set_page_private(&page[size], high);
__SetPageBuddy(&page[size]);
}
}
static struct page *alloc_freepage_one(struct zone *zone, unsigned int order,
phys_addr_t exception_areas[][2],
int nr_exception)
{
unsigned int current_order;
struct free_area *area;
struct page *page;
int mt;
for (mt = MIGRATE_UNMOVABLE; mt < MIGRATE_PCPTYPES; ++mt) {
if (mt == MIGRATE_CMA)
continue;
for (current_order = order;
current_order < MAX_ORDER; ++current_order) {
area = &(zone->free_area[current_order]);
list_for_each_entry(page, &area->free_list[mt], lru) {
if (get_exception_of_page(page_to_phys(page),
exception_areas,
nr_exception) >= 0)
continue;
list_del(&page->lru);
__ClearPageBuddy(page);
set_page_private(page, 0);
area->nr_free--;
expand(zone, page, order,
current_order, area, mt);
set_pcppage_migratetype(page, mt);
return page;
}
}
}
return NULL;
}
static int alloc_freepages_range(struct zone *zone, unsigned int order,
struct page **pages, int required,
phys_addr_t exception_areas[][2],
int nr_exception)
{
unsigned long wmark;
unsigned long flags;
struct page *page;
int i, count = 0;
spin_lock_irqsave(&zone->lock, flags);
while (required > count) {
wmark = min_wmark_pages(zone) + (1 << order);
if (!zone_watermark_ok(zone, order, wmark, 0, 0))
break;
page = alloc_freepage_one(zone, order, exception_areas,
nr_exception);
if (!page)
break;
__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
pages[count++] = page;
__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
}
spin_unlock_irqrestore(&zone->lock, flags);
for (i = 0; i < count; i++)
post_alloc_hook(pages[i], order, GFP_KERNEL);
return count;
}
static void prep_highorder_pages(unsigned long base_pfn, int order)
{
int nr_pages = 1 << order;
unsigned long pfn;
for (pfn = base_pfn + 1; pfn < base_pfn + nr_pages; pfn++)
set_page_count(pfn_to_page(pfn), 0);
}
static unsigned long get_scan_pfn(unsigned long base_pfn, unsigned long end_pfn)
{
unsigned long pfn_pos = get_random_long() %
PHYS_PFN(memblock_phys_mem_size());
struct memblock_region *region;
unsigned long scan_pfn = 0;
for_each_mem_region(region) {
if (pfn_pos < PFN_DOWN(region->size)) {
scan_pfn = PFN_DOWN(region->base) + pfn_pos;
break;
}
pfn_pos -= PFN_DOWN(region->size);
}
if (scan_pfn == 0)
scan_pfn = base_pfn;
return ALIGN_DOWN(scan_pfn, pageblock_nr_pages);
}
static int steal_highorder_pages_block(struct page *pages[], unsigned int order,
int required, unsigned long block_pfn,
unsigned int *status)
{
unsigned long end_pfn = block_pfn + pageblock_nr_pages;
unsigned int pfn;
int picked = 0;
for (pfn = block_pfn; pfn < end_pfn; pfn += 1 << order) {
int mt = get_pageblock_migratetype(pfn_to_page(pfn));
int ret;
struct acr_info info = {0};
/*
* CMA pages should not be reclaimed.
* Isolated page blocks should not be tried again because it
* causes isolated page block remained in isolated state
* forever.
*/
if (is_migrate_cma(mt) || is_migrate_isolate(mt)) {
status[HPA_SKIP_CMA_OR_ISOLATE_MIGRATETYPE]++;
return 0;
}
if (!is_movable_chunk(pfn, order, status))
continue;
ret = alloc_contig_range(pfn, pfn + (1 << order), mt,
GFP_KERNEL | __GFP_NORETRY, &info);
if (ret == 0) {
prep_highorder_pages(pfn, order);
pages[picked++] = pfn_to_page(pfn);
status[HPA_STEAL_SUCCESS]++;
if (picked == required)
break;
} else {
if (ret == -EBUSY)
status[HPA_STEAL_FAIL_EBUSY]++;
else
status[HPA_STEAL_FAIL]++;
}
}
return picked;
}
static int steal_highorder_pages(struct page *pages[], int required, unsigned int order,
unsigned long base_pfn, unsigned long end_pfn,
phys_addr_t exception_areas[][2], int nr_exception,
unsigned int *status)
{
unsigned long pfn;
int picked = 0;
for (pfn = base_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
int ret;
ret = get_exception_of_page(pfn << PAGE_SHIFT,
exception_areas, nr_exception);
if (ret >= 0) {
/*
* skip the whole page block if a page is in a exception
* area. exception_areas[] may have an entry of
* [phys, -1] which means allocation after phys until
* the end of the system memory should is not allowed.
* Since we use pfn, it is okay rounding up pfn of -1
* by pageblock_nr_pages.
*/
pfn = exception_areas[ret][1] >> PAGE_SHIFT;
pfn = ALIGN(pfn, pageblock_nr_pages);
/* pageblock_nr_pages is added on the next iteration */
pfn -= pageblock_nr_pages;
continue;
}
if (!pfn_valid_within(pfn))
continue;
picked += steal_highorder_pages_block(pages + picked, order, required - picked,
pfn, status);
if (picked == required)
break;
}
return picked;
}
/**
* alloc_pages_highorder_except() - allocate large order pages
* @order: required page order
* @pages: array to store allocated @order order pages
* @nents: number of @order order pages
* @exception_areas: memory areas that should not include pages in @pages
* @nr_exception: number of memory areas in @exception_areas
*
* Returns 0 on allocation success. -error otherwise.
*
* Allocates @nents pages of @order << PAGE_SHIFT number of consecutive pages
* and store the page descriptors of the allocated pages to @pages. Every page
* in @pages should also be aligned by @order << PAGE_SHIFT.
*
* If @nr_exception is larger than 0, alloc_page_highorder_except() does not
* allocate pages in the areas described in @exception_areas. @exception_areas
* is an array of array with two elements: The first element is the start
* address of an area and the last element is the end address. The end address
* is the last byte address in the area, that is "[start address] + [size] - 1".
*/
int alloc_pages_highorder_except(int order, struct page **pages, int nents,
phys_addr_t exception_areas[][2],
int nr_exception)
{
unsigned long base_pfn = PHYS_PFN(memblock_start_of_DRAM());
unsigned long end_pfn = PHYS_PFN(memblock_end_of_DRAM());
unsigned long scan_pfn;
int retry_count = 0;
int picked = 0;
int i;
base_pfn = ALIGN(base_pfn, pageblock_nr_pages);
while (true) {
struct zone *zone;
unsigned int status[NUM_HPA_RECLAIM_STATS] = {0, };
for_each_zone(zone) {
if (zone->spanned_pages == 0)
continue;
picked += alloc_freepages_range(zone, order,
pages + picked, nents - picked,
exception_areas, nr_exception);
if (picked == nents)
return 0;
}
scan_pfn = get_scan_pfn(base_pfn, end_pfn);
lru_add_drain_all();
picked += steal_highorder_pages(pages + picked, nents - picked,
order, scan_pfn, end_pfn,
exception_areas, nr_exception, status);
if (picked == nents)
return 0;
picked += steal_highorder_pages(pages + picked, nents - picked,
order, base_pfn, scan_pfn,
exception_areas, nr_exception, status);
if (picked == nents)
return 0;
for (i = 0; i < NUM_HPA_RECLAIM_STATS; i++)
pr_info("%s -> %d\n", hpa_reclaim_status_text[i], status[i]);
/* picked < nents */
drop_slab();
count_vm_event(DROP_SLAB);
if (hpa_killer() < 0)
break;
pr_info("discarded slabs and killed a process: %d times\n",
retry_count++);
}
for (i = 0; i < picked; i++)
__free_pages(pages[i], order);
pr_err("grabbed only %d/%d %d-order pages\n",
nents - picked, nents, order);
show_mem(0, 0);
return -ENOMEM;
}
int free_pages_highorder(int order, struct page **pages, int nents)
{
int i;
for (i = 0; i < nents; i++)
__free_pages(pages[i], order);
return 0;
}