kernel_samsung_a53x/arch/x86/include/asm/efi.h
Ard Biesheuvel 2aa6501b2f efi/x86: Free EFI memory map only when installing a new one.
[ Commit 75dde792d6f6c2d0af50278bd374bf0c512fe196 upstream ]

The logic in __efi_memmap_init() is shared between two different
execution flows:
- mapping the EFI memory map early or late into the kernel VA space, so
  that its entries can be accessed;
- the x86 specific cloning of the EFI memory map in order to insert new
  entries that are created as a result of making a memory reservation
  via a call to efi_mem_reserve().

In the former case, the underlying memory containing the kernel's view
of the EFI memory map (which may be heavily modified by the kernel
itself on x86) is not modified at all, and the only thing that changes
is the virtual mapping of this memory, which is different between early
and late boot.

In the latter case, an entirely new allocation is created that carries a
new, updated version of the kernel's view of the EFI memory map. When
installing this new version, the old version will no longer be
referenced, and if the memory was allocated by the kernel, it will leak
unless it gets freed.

The logic that implements this freeing currently lives on the code path
that is shared between these two use cases, but it should only apply to
the latter. So move it to the correct spot.

While at it, drop the dummy definition for non-x86 architectures, as
that is no longer needed.

Cc: <stable@vger.kernel.org>
Fixes: f0ef6523475f ("efi: Fix efi_memmap_alloc() leaks")
Tested-by: Ashish Kalra <Ashish.Kalra@amd.com>
Link: https://lore.kernel.org/all/36ad5079-4326-45ed-85f6-928ff76483d3@amd.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-11-19 14:19:35 +01:00

396 lines
12 KiB
C
Executable file

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_EFI_H
#define _ASM_X86_EFI_H
#include <asm/fpu/api.h>
#include <asm/processor-flags.h>
#include <asm/tlb.h>
#include <asm/nospec-branch.h>
#include <asm/mmu_context.h>
#include <linux/build_bug.h>
#include <linux/kernel.h>
#include <linux/pgtable.h>
extern unsigned long efi_fw_vendor, efi_config_table;
/*
* We map the EFI regions needed for runtime services non-contiguously,
* with preserved alignment on virtual addresses starting from -4G down
* for a total max space of 64G. This way, we provide for stable runtime
* services addresses across kernels so that a kexec'd kernel can still
* use them.
*
* This is the main reason why we're doing stable VA mappings for RT
* services.
*/
#define EFI32_LOADER_SIGNATURE "EL32"
#define EFI64_LOADER_SIGNATURE "EL64"
#define ARCH_EFI_IRQ_FLAGS_MASK X86_EFLAGS_IF
/*
* The EFI services are called through variadic functions in many cases. These
* functions are implemented in assembler and support only a fixed number of
* arguments. The macros below allows us to check at build time that we don't
* try to call them with too many arguments.
*
* __efi_nargs() will return the number of arguments if it is 7 or less, and
* cause a BUILD_BUG otherwise. The limitations of the C preprocessor make it
* impossible to calculate the exact number of arguments beyond some
* pre-defined limit. The maximum number of arguments currently supported by
* any of the thunks is 7, so this is good enough for now and can be extended
* in the obvious way if we ever need more.
*/
#define __efi_nargs(...) __efi_nargs_(__VA_ARGS__)
#define __efi_nargs_(...) __efi_nargs__(0, ##__VA_ARGS__, \
__efi_arg_sentinel(7), __efi_arg_sentinel(6), \
__efi_arg_sentinel(5), __efi_arg_sentinel(4), \
__efi_arg_sentinel(3), __efi_arg_sentinel(2), \
__efi_arg_sentinel(1), __efi_arg_sentinel(0))
#define __efi_nargs__(_0, _1, _2, _3, _4, _5, _6, _7, n, ...) \
__take_second_arg(n, \
({ BUILD_BUG_ON_MSG(1, "__efi_nargs limit exceeded"); 8; }))
#define __efi_arg_sentinel(n) , n
/*
* __efi_nargs_check(f, n, ...) will cause a BUILD_BUG if the ellipsis
* represents more than n arguments.
*/
#define __efi_nargs_check(f, n, ...) \
__efi_nargs_check_(f, __efi_nargs(__VA_ARGS__), n)
#define __efi_nargs_check_(f, p, n) __efi_nargs_check__(f, p, n)
#define __efi_nargs_check__(f, p, n) ({ \
BUILD_BUG_ON_MSG( \
(p) > (n), \
#f " called with too many arguments (" #p ">" #n ")"); \
})
#ifdef CONFIG_X86_32
#define arch_efi_call_virt_setup() \
({ \
kernel_fpu_begin(); \
firmware_restrict_branch_speculation_start(); \
})
#define arch_efi_call_virt_teardown() \
({ \
firmware_restrict_branch_speculation_end(); \
kernel_fpu_end(); \
})
#define arch_efi_call_virt(p, f, args...) p->f(args)
#else /* !CONFIG_X86_32 */
#define EFI_LOADER_SIGNATURE "EL64"
extern asmlinkage u64 __efi_call(void *fp, ...);
#define efi_call(...) ({ \
__efi_nargs_check(efi_call, 7, __VA_ARGS__); \
__efi_call(__VA_ARGS__); \
})
/*
* struct efi_scratch - Scratch space used while switching to/from efi_mm
* @phys_stack: stack used during EFI Mixed Mode
* @prev_mm: store/restore stolen mm_struct while switching to/from efi_mm
*/
struct efi_scratch {
u64 phys_stack;
struct mm_struct *prev_mm;
} __packed;
#define arch_efi_call_virt_setup() \
({ \
efi_sync_low_kernel_mappings(); \
kernel_fpu_begin(); \
firmware_restrict_branch_speculation_start(); \
efi_switch_mm(&efi_mm); \
})
#define arch_efi_call_virt(p, f, args...) \
efi_call((void *)p->f, args) \
#define arch_efi_call_virt_teardown() \
({ \
efi_switch_mm(efi_scratch.prev_mm); \
firmware_restrict_branch_speculation_end(); \
kernel_fpu_end(); \
})
#ifdef CONFIG_KASAN
/*
* CONFIG_KASAN may redefine memset to __memset. __memset function is present
* only in kernel binary. Since the EFI stub linked into a separate binary it
* doesn't have __memset(). So we should use standard memset from
* arch/x86/boot/compressed/string.c. The same applies to memcpy and memmove.
*/
#undef memcpy
#undef memset
#undef memmove
#endif
#endif /* CONFIG_X86_32 */
extern struct efi_scratch efi_scratch;
extern int __init efi_memblock_x86_reserve_range(void);
extern void __init efi_print_memmap(void);
extern void __init efi_map_region(efi_memory_desc_t *md);
extern void __init efi_map_region_fixed(efi_memory_desc_t *md);
extern void efi_sync_low_kernel_mappings(void);
extern int __init efi_alloc_page_tables(void);
extern int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages);
extern void __init efi_runtime_update_mappings(void);
extern void __init efi_dump_pagetable(void);
extern void __init efi_apply_memmap_quirks(void);
extern int __init efi_reuse_config(u64 tables, int nr_tables);
extern void efi_delete_dummy_variable(void);
extern void efi_switch_mm(struct mm_struct *mm);
extern void efi_recover_from_page_fault(unsigned long phys_addr);
extern void efi_free_boot_services(void);
/* kexec external ABI */
struct efi_setup_data {
u64 fw_vendor;
u64 __unused;
u64 tables;
u64 smbios;
u64 reserved[8];
};
extern u64 efi_setup;
#ifdef CONFIG_EFI
extern efi_status_t __efi64_thunk(u32, ...);
#define efi64_thunk(...) ({ \
__efi_nargs_check(efi64_thunk, 6, __VA_ARGS__); \
__efi64_thunk(__VA_ARGS__); \
})
static inline bool efi_is_mixed(void)
{
if (!IS_ENABLED(CONFIG_EFI_MIXED))
return false;
return IS_ENABLED(CONFIG_X86_64) && !efi_enabled(EFI_64BIT);
}
static inline bool efi_runtime_supported(void)
{
if (IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT))
return true;
return IS_ENABLED(CONFIG_EFI_MIXED);
}
extern void parse_efi_setup(u64 phys_addr, u32 data_len);
extern void efifb_setup_from_dmi(struct screen_info *si, const char *opt);
extern void efi_thunk_runtime_setup(void);
efi_status_t efi_set_virtual_address_map(unsigned long memory_map_size,
unsigned long descriptor_size,
u32 descriptor_version,
efi_memory_desc_t *virtual_map,
unsigned long systab_phys);
/* arch specific definitions used by the stub code */
#ifdef CONFIG_EFI_MIXED
#define ARCH_HAS_EFISTUB_WRAPPERS
static inline bool efi_is_64bit(void)
{
extern const bool efi_is64;
return efi_is64;
}
static inline bool efi_is_native(void)
{
if (!IS_ENABLED(CONFIG_X86_64))
return true;
return efi_is_64bit();
}
#define efi_mixed_mode_cast(attr) \
__builtin_choose_expr( \
__builtin_types_compatible_p(u32, __typeof__(attr)), \
(unsigned long)(attr), (attr))
#define efi_table_attr(inst, attr) \
(efi_is_native() \
? inst->attr \
: (__typeof__(inst->attr)) \
efi_mixed_mode_cast(inst->mixed_mode.attr))
/*
* The following macros allow translating arguments if necessary from native to
* mixed mode. The use case for this is to initialize the upper 32 bits of
* output parameters, and where the 32-bit method requires a 64-bit argument,
* which must be split up into two arguments to be thunked properly.
*
* As examples, the AllocatePool boot service returns the address of the
* allocation, but it will not set the high 32 bits of the address. To ensure
* that the full 64-bit address is initialized, we zero-init the address before
* calling the thunk.
*
* The FreePages boot service takes a 64-bit physical address even in 32-bit
* mode. For the thunk to work correctly, a native 64-bit call of
* free_pages(addr, size)
* must be translated to
* efi64_thunk(free_pages, addr & U32_MAX, addr >> 32, size)
* so that the two 32-bit halves of addr get pushed onto the stack separately.
*/
static inline void *efi64_zero_upper(void *p)
{
((u32 *)p)[1] = 0;
return p;
}
static inline u32 efi64_convert_status(efi_status_t status)
{
return (u32)(status | (u64)status >> 32);
}
#define __efi64_argmap_free_pages(addr, size) \
((addr), 0, (size))
#define __efi64_argmap_get_memory_map(mm_size, mm, key, size, ver) \
((mm_size), (mm), efi64_zero_upper(key), efi64_zero_upper(size), (ver))
#define __efi64_argmap_allocate_pool(type, size, buffer) \
((type), (size), efi64_zero_upper(buffer))
#define __efi64_argmap_create_event(type, tpl, f, c, event) \
((type), (tpl), (f), (c), efi64_zero_upper(event))
#define __efi64_argmap_set_timer(event, type, time) \
((event), (type), lower_32_bits(time), upper_32_bits(time))
#define __efi64_argmap_wait_for_event(num, event, index) \
((num), (event), efi64_zero_upper(index))
#define __efi64_argmap_handle_protocol(handle, protocol, interface) \
((handle), (protocol), efi64_zero_upper(interface))
#define __efi64_argmap_locate_protocol(protocol, reg, interface) \
((protocol), (reg), efi64_zero_upper(interface))
#define __efi64_argmap_locate_device_path(protocol, path, handle) \
((protocol), (path), efi64_zero_upper(handle))
#define __efi64_argmap_exit(handle, status, size, data) \
((handle), efi64_convert_status(status), (size), (data))
/* PCI I/O */
#define __efi64_argmap_get_location(protocol, seg, bus, dev, func) \
((protocol), efi64_zero_upper(seg), efi64_zero_upper(bus), \
efi64_zero_upper(dev), efi64_zero_upper(func))
/* LoadFile */
#define __efi64_argmap_load_file(protocol, path, policy, bufsize, buf) \
((protocol), (path), (policy), efi64_zero_upper(bufsize), (buf))
/* Graphics Output Protocol */
#define __efi64_argmap_query_mode(gop, mode, size, info) \
((gop), (mode), efi64_zero_upper(size), efi64_zero_upper(info))
/*
* The macros below handle the plumbing for the argument mapping. To add a
* mapping for a specific EFI method, simply define a macro
* __efi64_argmap_<method name>, following the examples above.
*/
#define __efi64_thunk_map(inst, func, ...) \
efi64_thunk(inst->mixed_mode.func, \
__efi64_argmap(__efi64_argmap_ ## func(__VA_ARGS__), \
(__VA_ARGS__)))
#define __efi64_argmap(mapped, args) \
__PASTE(__efi64_argmap__, __efi_nargs(__efi_eat mapped))(mapped, args)
#define __efi64_argmap__0(mapped, args) __efi_eval mapped
#define __efi64_argmap__1(mapped, args) __efi_eval args
#define __efi_eat(...)
#define __efi_eval(...) __VA_ARGS__
/* The three macros below handle dispatching via the thunk if needed */
#define efi_call_proto(inst, func, ...) \
(efi_is_native() \
? inst->func(inst, ##__VA_ARGS__) \
: __efi64_thunk_map(inst, func, inst, ##__VA_ARGS__))
#define efi_bs_call(func, ...) \
(efi_is_native() \
? efi_system_table->boottime->func(__VA_ARGS__) \
: __efi64_thunk_map(efi_table_attr(efi_system_table, \
boottime), \
func, __VA_ARGS__))
#define efi_rt_call(func, ...) \
(efi_is_native() \
? efi_system_table->runtime->func(__VA_ARGS__) \
: __efi64_thunk_map(efi_table_attr(efi_system_table, \
runtime), \
func, __VA_ARGS__))
#else /* CONFIG_EFI_MIXED */
static inline bool efi_is_64bit(void)
{
return IS_ENABLED(CONFIG_X86_64);
}
#endif /* CONFIG_EFI_MIXED */
extern bool efi_reboot_required(void);
extern bool efi_is_table_address(unsigned long phys_addr);
extern void efi_find_mirror(void);
extern void efi_reserve_boot_services(void);
#else
static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {}
static inline bool efi_reboot_required(void)
{
return false;
}
static inline bool efi_is_table_address(unsigned long phys_addr)
{
return false;
}
static inline void efi_find_mirror(void)
{
}
static inline void efi_reserve_boot_services(void)
{
}
#endif /* CONFIG_EFI */
#ifdef CONFIG_EFI_FAKE_MEMMAP
extern void __init efi_fake_memmap_early(void);
#else
static inline void efi_fake_memmap_early(void)
{
}
#endif
extern int __init efi_memmap_alloc(unsigned int num_entries,
struct efi_memory_map_data *data);
extern void __efi_memmap_free(u64 phys, unsigned long size,
unsigned long flags);
extern int __init efi_memmap_install(struct efi_memory_map_data *data);
extern int __init efi_memmap_split_count(efi_memory_desc_t *md,
struct range *range);
extern void __init efi_memmap_insert(struct efi_memory_map *old_memmap,
void *buf, struct efi_mem_range *mem);
#endif /* _ASM_X86_EFI_H */