kernel_samsung_a53x/drivers/net/wireless/cnss2/main.c
2024-06-15 16:02:09 -03:00

3833 lines
98 KiB
C
Executable file

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2016-2021, The Linux Foundation. All rights reserved. */
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pm_wakeup.h>
#include <linux/reboot.h>
#include <linux/rwsem.h>
#include <linux/suspend.h>
#include <linux/timer.h>
#if IS_ENABLED(CONFIG_QCOM_MINIDUMP)
#include <soc/qcom/minidump.h>
#endif
#include "cnss_plat_ipc_qmi.h"
#include "main.h"
#include "bus.h"
#include "debug.h"
#include "genl.h"
#ifdef CONFIG_SOC_S5E9925
#include <linux/exynos-pci-ctrl.h>
#endif
#define CNSS_DUMP_FORMAT_VER 0x11
#define CNSS_DUMP_FORMAT_VER_V2 0x22
#define CNSS_DUMP_MAGIC_VER_V2 0x42445953
#define CNSS_DUMP_NAME "CNSS_WLAN"
#define CNSS_DUMP_DESC_SIZE 0x1000
#define CNSS_DUMP_SEG_VER 0x1
#define RECOVERY_DELAY_MS 100
#define FILE_SYSTEM_READY 1
#define FW_READY_TIMEOUT 20000
#define FW_ASSERT_TIMEOUT 5000
#define CNSS_EVENT_PENDING 2989
#define COLD_BOOT_CAL_SHUTDOWN_DELAY_MS 50
#define CNSS_QUIRKS_DEFAULT 0
#ifdef CONFIG_CNSS_EMULATION
#define CNSS_MHI_TIMEOUT_DEFAULT 90000
#define CNSS_MHI_M2_TIMEOUT_DEFAULT 2000
#define CNSS_QMI_TIMEOUT_DEFAULT 90000
#else
#define CNSS_MHI_TIMEOUT_DEFAULT 0
#define CNSS_MHI_M2_TIMEOUT_DEFAULT 25
#define CNSS_QMI_TIMEOUT_DEFAULT 10000
#endif
#define CNSS_BDF_TYPE_DEFAULT CNSS_BDF_ELF
#define CNSS_TIME_SYNC_PERIOD_DEFAULT 900000
#define CNSS_DMS_QMI_CONNECTION_WAIT_MS 50
#define CNSS_DMS_QMI_CONNECTION_WAIT_RETRY 200
#define CNSS_DAEMON_CONNECT_TIMEOUT_MS 30000
#define CNSS_CAL_DB_FILE_NAME "wlfw_cal_db.bin"
#define CNSS_CAL_START_PROBE_WAIT_RETRY_MAX 100
#define CNSS_CAL_START_PROBE_WAIT_MS 500
enum cnss_cal_db_op {
CNSS_CAL_DB_UPLOAD,
CNSS_CAL_DB_DOWNLOAD,
CNSS_CAL_DB_INVALID_OP,
};
static struct cnss_plat_data *plat_env;
static DECLARE_RWSEM(cnss_pm_sem);
static struct cnss_fw_files FW_FILES_QCA6174_FW_3_0 = {
"qwlan30.bin", "bdwlan30.bin", "otp30.bin", "utf30.bin",
"utfbd30.bin", "epping30.bin", "evicted30.bin"
};
static struct cnss_fw_files FW_FILES_DEFAULT = {
"qwlan.bin", "bdwlan.bin", "otp.bin", "utf.bin",
"utfbd.bin", "epping.bin", "evicted.bin"
};
struct cnss_driver_event {
struct list_head list;
enum cnss_driver_event_type type;
bool sync;
struct completion complete;
int ret;
void *data;
};
#ifdef CONFIG_SEC_SS_CNSS_FEATURE_SYSFS
/**
* enum driver_status: Driver Modules status
* @DRIVER_MODULES_UNINITIALIZED: Driver CDS modules uninitialized
* @DRIVER_MODULES_ENABLED: Driver CDS modules opened
* @DRIVER_MODULES_CLOSED: Driver CDS modules closed
*/
enum driver_modules_status {
DRIVER_MODULES_UNINITIALIZED,
DRIVER_MODULES_ENABLED,
DRIVER_MODULES_CLOSED
};
enum driver_modules_status current_driver_status = DRIVER_MODULES_UNINITIALIZED;
char ver_info[512] = {0,};
char softap_info[512] = {0,};
int dump_in_progress = 0;
#define MACLOADER_TIMEOUT 10000
#endif /* CONFIG_SEC_SS_CNSS_FEATURE_SYSFS */
static void cnss_set_plat_priv(struct platform_device *plat_dev,
struct cnss_plat_data *plat_priv)
{
plat_env = plat_priv;
}
struct cnss_plat_data *cnss_get_plat_priv(struct platform_device *plat_dev)
{
return plat_env;
}
/**
* cnss_get_mem_seg_count - Get segment count of memory
* @type: memory type
* @seg: segment count
*
* Return: 0 on success, negative value on failure
*/
int cnss_get_mem_seg_count(enum cnss_remote_mem_type type, u32 *seg)
{
struct cnss_plat_data *plat_priv;
plat_priv = cnss_get_plat_priv(NULL);
if (!plat_priv)
return -ENODEV;
switch (type) {
case CNSS_REMOTE_MEM_TYPE_FW:
*seg = plat_priv->fw_mem_seg_len;
break;
case CNSS_REMOTE_MEM_TYPE_QDSS:
*seg = plat_priv->qdss_mem_seg_len;
break;
default:
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(cnss_get_mem_seg_count);
/**
* cnss_get_mem_segment_info - Get memory info of different type
* @type: memory type
* @segment: array to save the segment info
* @seg: segment count
*
* Return: 0 on success, negative value on failure
*/
int cnss_get_mem_segment_info(enum cnss_remote_mem_type type,
struct cnss_mem_segment segment[],
u32 segment_count)
{
struct cnss_plat_data *plat_priv;
u32 i;
plat_priv = cnss_get_plat_priv(NULL);
if (!plat_priv)
return -ENODEV;
switch (type) {
case CNSS_REMOTE_MEM_TYPE_FW:
if (segment_count > plat_priv->fw_mem_seg_len)
segment_count = plat_priv->fw_mem_seg_len;
for (i = 0; i < segment_count; i++) {
segment[i].size = plat_priv->fw_mem[i].size;
segment[i].va = plat_priv->fw_mem[i].va;
segment[i].pa = plat_priv->fw_mem[i].pa;
}
break;
case CNSS_REMOTE_MEM_TYPE_QDSS:
if (segment_count > plat_priv->qdss_mem_seg_len)
segment_count = plat_priv->qdss_mem_seg_len;
for (i = 0; i < segment_count; i++) {
segment[i].size = plat_priv->qdss_mem[i].size;
segment[i].va = plat_priv->qdss_mem[i].va;
segment[i].pa = plat_priv->qdss_mem[i].pa;
}
break;
default:
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(cnss_get_mem_segment_info);
int cnss_set_feature_list(struct cnss_plat_data *plat_priv,
enum cnss_feature_v01 feature)
{
if (unlikely(!plat_priv || feature >= CNSS_MAX_FEATURE_V01))
return -EINVAL;
plat_priv->feature_list |= 1 << feature;
return 0;
}
int cnss_get_feature_list(struct cnss_plat_data *plat_priv,
u64 *feature_list)
{
if (unlikely(!plat_priv))
return -EINVAL;
*feature_list = plat_priv->feature_list;
return 0;
}
static int cnss_pm_notify(struct notifier_block *b,
unsigned long event, void *p)
{
switch (event) {
case PM_SUSPEND_PREPARE:
down_write(&cnss_pm_sem);
break;
case PM_POST_SUSPEND:
up_write(&cnss_pm_sem);
break;
}
return NOTIFY_DONE;
}
static struct notifier_block cnss_pm_notifier = {
.notifier_call = cnss_pm_notify,
};
void cnss_pm_stay_awake(struct cnss_plat_data *plat_priv)
{
if (atomic_inc_return(&plat_priv->pm_count) != 1)
return;
cnss_pr_dbg("PM stay awake, state: 0x%lx, count: %d\n",
plat_priv->driver_state,
atomic_read(&plat_priv->pm_count));
pm_stay_awake(&plat_priv->plat_dev->dev);
}
void cnss_pm_relax(struct cnss_plat_data *plat_priv)
{
int r = atomic_dec_return(&plat_priv->pm_count);
WARN_ON(r < 0);
if (r != 0)
return;
cnss_pr_dbg("PM relax, state: 0x%lx, count: %d\n",
plat_priv->driver_state,
atomic_read(&plat_priv->pm_count));
pm_relax(&plat_priv->plat_dev->dev);
}
void cnss_lock_pm_sem(struct device *dev)
{
down_read(&cnss_pm_sem);
}
EXPORT_SYMBOL(cnss_lock_pm_sem);
void cnss_release_pm_sem(struct device *dev)
{
up_read(&cnss_pm_sem);
}
EXPORT_SYMBOL(cnss_release_pm_sem);
int cnss_get_fw_files_for_target(struct device *dev,
struct cnss_fw_files *pfw_files,
u32 target_type, u32 target_version)
{
if (!pfw_files)
return -ENODEV;
switch (target_version) {
case QCA6174_REV3_VERSION:
case QCA6174_REV3_2_VERSION:
memcpy(pfw_files, &FW_FILES_QCA6174_FW_3_0, sizeof(*pfw_files));
break;
default:
memcpy(pfw_files, &FW_FILES_DEFAULT, sizeof(*pfw_files));
cnss_pr_err("Unknown target version, type: 0x%X, version: 0x%X",
target_type, target_version);
break;
}
return 0;
}
EXPORT_SYMBOL(cnss_get_fw_files_for_target);
int cnss_get_platform_cap(struct device *dev, struct cnss_platform_cap *cap)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
if (!plat_priv)
return -ENODEV;
if (!cap)
return -EINVAL;
*cap = plat_priv->cap;
cnss_pr_dbg("Platform cap_flag is 0x%x\n", cap->cap_flag);
return 0;
}
EXPORT_SYMBOL(cnss_get_platform_cap);
void cnss_request_pm_qos(struct device *dev, u32 qos_val)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
if (!plat_priv)
return;
cpu_latency_qos_add_request(&plat_priv->qos_request, qos_val);
}
EXPORT_SYMBOL(cnss_request_pm_qos);
void cnss_remove_pm_qos(struct device *dev)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
if (!plat_priv)
return;
cpu_latency_qos_remove_request(&plat_priv->qos_request);
}
EXPORT_SYMBOL(cnss_remove_pm_qos);
int cnss_wlan_enable(struct device *dev,
struct cnss_wlan_enable_cfg *config,
enum cnss_driver_mode mode,
const char *host_version)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
int ret = 0;
if (plat_priv->device_id == QCA6174_DEVICE_ID)
return 0;
if (test_bit(QMI_BYPASS, &plat_priv->ctrl_params.quirks))
return 0;
if (!config || !host_version) {
cnss_pr_err("Invalid config or host_version pointer\n");
return -EINVAL;
}
cnss_pr_dbg("Mode: %d, config: %pK, host_version: %s\n",
mode, config, host_version);
if (mode == CNSS_WALTEST || mode == CNSS_CCPM)
goto skip_cfg;
ret = cnss_wlfw_wlan_cfg_send_sync(plat_priv, config, host_version);
if (ret)
goto out;
skip_cfg:
ret = cnss_wlfw_wlan_mode_send_sync(plat_priv, mode);
out:
return ret;
}
EXPORT_SYMBOL(cnss_wlan_enable);
int cnss_wlan_disable(struct device *dev, enum cnss_driver_mode mode)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
int ret = 0;
if (plat_priv->device_id == QCA6174_DEVICE_ID)
return 0;
if (test_bit(QMI_BYPASS, &plat_priv->ctrl_params.quirks))
return 0;
ret = cnss_wlfw_wlan_mode_send_sync(plat_priv, CNSS_OFF);
cnss_bus_free_qdss_mem(plat_priv);
return ret;
}
EXPORT_SYMBOL(cnss_wlan_disable);
int cnss_athdiag_read(struct device *dev, u32 offset, u32 mem_type,
u32 data_len, u8 *output)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
int ret = 0;
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL!\n");
return -EINVAL;
}
if (plat_priv->device_id == QCA6174_DEVICE_ID)
return 0;
if (!test_bit(CNSS_FW_READY, &plat_priv->driver_state)) {
cnss_pr_err("Invalid state for athdiag read: 0x%lx\n",
plat_priv->driver_state);
ret = -EINVAL;
goto out;
}
ret = cnss_wlfw_athdiag_read_send_sync(plat_priv, offset, mem_type,
data_len, output);
out:
return ret;
}
EXPORT_SYMBOL(cnss_athdiag_read);
int cnss_athdiag_write(struct device *dev, u32 offset, u32 mem_type,
u32 data_len, u8 *input)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
int ret = 0;
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL!\n");
return -EINVAL;
}
if (plat_priv->device_id == QCA6174_DEVICE_ID)
return 0;
if (!test_bit(CNSS_FW_READY, &plat_priv->driver_state)) {
cnss_pr_err("Invalid state for athdiag write: 0x%lx\n",
plat_priv->driver_state);
ret = -EINVAL;
goto out;
}
ret = cnss_wlfw_athdiag_write_send_sync(plat_priv, offset, mem_type,
data_len, input);
out:
return ret;
}
EXPORT_SYMBOL(cnss_athdiag_write);
int cnss_set_fw_log_mode(struct device *dev, u8 fw_log_mode)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
if (plat_priv->device_id == QCA6174_DEVICE_ID)
return 0;
return cnss_wlfw_ini_send_sync(plat_priv, fw_log_mode);
}
EXPORT_SYMBOL(cnss_set_fw_log_mode);
int cnss_set_pcie_gen_speed(struct device *dev, u8 pcie_gen_speed)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
if (!plat_priv)
return -EINVAL;
if (plat_priv->device_id != QCA6490_DEVICE_ID ||
!plat_priv->fw_pcie_gen_switch)
return -EOPNOTSUPP;
if (pcie_gen_speed < QMI_PCIE_GEN_SPEED_1_V01 ||
pcie_gen_speed > QMI_PCIE_GEN_SPEED_3_V01)
return -EINVAL;
cnss_pr_dbg("WLAN provided PCIE gen speed: %d\n", pcie_gen_speed);
plat_priv->pcie_gen_speed = pcie_gen_speed;
return 0;
}
EXPORT_SYMBOL(cnss_set_pcie_gen_speed);
static int cnss_fw_mem_ready_hdlr(struct cnss_plat_data *plat_priv)
{
int ret = 0;
if (!plat_priv)
return -ENODEV;
set_bit(CNSS_FW_MEM_READY, &plat_priv->driver_state);
ret = cnss_wlfw_tgt_cap_send_sync(plat_priv);
if (ret)
goto out;
if (plat_priv->hds_enabled)
cnss_wlfw_bdf_dnld_send_sync(plat_priv, CNSS_BDF_HDS);
cnss_wlfw_bdf_dnld_send_sync(plat_priv, CNSS_BDF_REGDB);
ret = cnss_wlfw_bdf_dnld_send_sync(plat_priv,
plat_priv->ctrl_params.bdf_type);
if (ret)
goto out;
ret = cnss_bus_load_m3(plat_priv);
if (ret)
goto out;
ret = cnss_wlfw_m3_dnld_send_sync(plat_priv);
if (ret)
goto out;
cnss_wlfw_qdss_dnld_send_sync(plat_priv);
return 0;
out:
return ret;
}
static int cnss_request_antenna_sharing(struct cnss_plat_data *plat_priv)
{
int ret = 0;
if (!plat_priv->antenna) {
ret = cnss_wlfw_antenna_switch_send_sync(plat_priv);
if (ret)
goto out;
}
if (test_bit(CNSS_COEX_CONNECTED, &plat_priv->driver_state)) {
ret = coex_antenna_switch_to_wlan_send_sync_msg(plat_priv);
if (ret)
goto out;
}
ret = cnss_wlfw_antenna_grant_send_sync(plat_priv);
if (ret)
goto out;
return 0;
out:
return ret;
}
static void cnss_release_antenna_sharing(struct cnss_plat_data *plat_priv)
{
if (test_bit(CNSS_COEX_CONNECTED, &plat_priv->driver_state))
coex_antenna_switch_to_mdm_send_sync_msg(plat_priv);
}
static int cnss_setup_dms_mac(struct cnss_plat_data *plat_priv)
{
u32 i;
int ret = 0;
struct cnss_plat_ipc_daemon_config *cfg;
ret = cnss_qmi_get_dms_mac(plat_priv);
if (ret == 0 && plat_priv->dms.mac_valid)
goto qmi_send;
/* DTSI property use-nv-mac is used to force DMS MAC address for WLAN.
* Thus assert on failure to get MAC from DMS even after retries
*/
if (plat_priv->use_nv_mac) {
/* Check if Daemon says platform support DMS MAC provisioning */
cfg = cnss_plat_ipc_qmi_daemon_config();
if (cfg) {
if (!cfg->dms_mac_addr_supported) {
cnss_pr_err("DMS MAC address not supported\n");
CNSS_ASSERT(0);
return -EINVAL;
}
}
for (i = 0; i < CNSS_DMS_QMI_CONNECTION_WAIT_RETRY; i++) {
if (plat_priv->dms.mac_valid)
break;
ret = cnss_qmi_get_dms_mac(plat_priv);
if (ret == 0)
break;
msleep(CNSS_DMS_QMI_CONNECTION_WAIT_MS);
}
if (!plat_priv->dms.mac_valid) {
cnss_pr_err("Unable to get MAC from DMS after retries\n");
CNSS_ASSERT(0);
return -EINVAL;
}
}
qmi_send:
if (plat_priv->dms.mac_valid)
ret =
cnss_wlfw_wlan_mac_req_send_sync(plat_priv, plat_priv->dms.mac,
ARRAY_SIZE(plat_priv->dms.mac));
return ret;
}
static int cnss_cal_db_mem_update(struct cnss_plat_data *plat_priv,
enum cnss_cal_db_op op, u32 *size)
{
int ret = 0;
u32 timeout = cnss_get_timeout(plat_priv,
CNSS_TIMEOUT_DAEMON_CONNECTION);
enum cnss_plat_ipc_qmi_client_id_v01 client_id =
CNSS_PLAT_IPC_DAEMON_QMI_CLIENT_V01;
if (op >= CNSS_CAL_DB_INVALID_OP)
return -EINVAL;
if (!plat_priv->cbc_file_download) {
cnss_pr_info("CAL DB file not required as per BDF\n");
return 0;
}
if (*size == 0) {
cnss_pr_err("Invalid cal file size\n");
return -EINVAL;
}
if (!test_bit(CNSS_DAEMON_CONNECTED, &plat_priv->driver_state)) {
cnss_pr_info("Waiting for CNSS Daemon connection\n");
ret = wait_for_completion_timeout(&plat_priv->daemon_connected,
msecs_to_jiffies(timeout));
if (!ret) {
cnss_pr_err("Daemon not yet connected\n");
CNSS_ASSERT(0);
return ret;
}
}
if (!plat_priv->cal_mem->va) {
cnss_pr_err("CAL DB Memory not setup for FW\n");
return -EINVAL;
}
/* Copy CAL DB file contents to/from CAL_TYPE_DDR mem allocated to FW */
if (op == CNSS_CAL_DB_DOWNLOAD) {
cnss_pr_dbg("Initiating Calibration file download to mem\n");
ret = cnss_plat_ipc_qmi_file_download(client_id,
CNSS_CAL_DB_FILE_NAME,
plat_priv->cal_mem->va,
size);
} else {
cnss_pr_dbg("Initiating Calibration mem upload to file\n");
ret = cnss_plat_ipc_qmi_file_upload(client_id,
CNSS_CAL_DB_FILE_NAME,
plat_priv->cal_mem->va,
*size);
}
if (ret)
cnss_pr_err("Cal DB file %s %s failure\n",
CNSS_CAL_DB_FILE_NAME,
op == CNSS_CAL_DB_DOWNLOAD ? "download" : "upload");
else
cnss_pr_dbg("Cal DB file %s %s size %d done\n",
CNSS_CAL_DB_FILE_NAME,
op == CNSS_CAL_DB_DOWNLOAD ? "download" : "upload",
*size);
return ret;
}
static int cnss_cal_mem_upload_to_file(struct cnss_plat_data *plat_priv)
{
if (plat_priv->cal_file_size > plat_priv->cal_mem->size) {
cnss_pr_err("Cal file size is larger than Cal DB Mem size\n");
return -EINVAL;
}
return cnss_cal_db_mem_update(plat_priv, CNSS_CAL_DB_UPLOAD,
&plat_priv->cal_file_size);
}
static int cnss_cal_file_download_to_mem(struct cnss_plat_data *plat_priv,
u32 *cal_file_size)
{
/* To download pass the total size of cal DB mem allocated.
* After cal file is download to mem, its size is updated in
* return pointer
*/
*cal_file_size = plat_priv->cal_mem->size;
return cnss_cal_db_mem_update(plat_priv, CNSS_CAL_DB_DOWNLOAD,
cal_file_size);
}
static int cnss_fw_ready_hdlr(struct cnss_plat_data *plat_priv)
{
int ret = 0;
u32 cal_file_size = 0;
if (!plat_priv)
return -ENODEV;
cnss_pr_dbg("Processing FW Init Done..\n");
del_timer(&plat_priv->fw_boot_timer);
set_bit(CNSS_FW_READY, &plat_priv->driver_state);
clear_bit(CNSS_DEV_ERR_NOTIFY, &plat_priv->driver_state);
cnss_wlfw_send_pcie_gen_speed_sync(plat_priv);
if (test_bit(CNSS_FW_BOOT_RECOVERY, &plat_priv->driver_state)) {
clear_bit(CNSS_FW_BOOT_RECOVERY, &plat_priv->driver_state);
clear_bit(CNSS_DRIVER_RECOVERY, &plat_priv->driver_state);
}
if (test_bit(ENABLE_WALTEST, &plat_priv->ctrl_params.quirks)) {
ret = cnss_wlfw_wlan_mode_send_sync(plat_priv,
CNSS_WALTEST);
} else if (test_bit(CNSS_IN_COLD_BOOT_CAL, &plat_priv->driver_state)) {
cnss_request_antenna_sharing(plat_priv);
cnss_cal_file_download_to_mem(plat_priv, &cal_file_size);
cnss_wlfw_cal_report_req_send_sync(plat_priv, cal_file_size);
plat_priv->cal_time = jiffies;
ret = cnss_wlfw_wlan_mode_send_sync(plat_priv,
CNSS_CALIBRATION);
} else {
ret = cnss_setup_dms_mac(plat_priv);
ret = cnss_bus_call_driver_probe(plat_priv);
}
if (ret && test_bit(CNSS_DEV_ERR_NOTIFY, &plat_priv->driver_state))
goto out;
else if (ret)
goto shutdown;
cnss_vreg_unvote_type(plat_priv, CNSS_VREG_PRIM);
#ifdef CONFIG_SOC_S5E9925
exynos_pcie_l1ss_ctrl(1, PCIE_L1SS_CTRL_WIFI, EXYNOS_RC_ID);
#endif
return 0;
shutdown:
cnss_bus_dev_shutdown(plat_priv);
clear_bit(CNSS_FW_READY, &plat_priv->driver_state);
clear_bit(CNSS_FW_MEM_READY, &plat_priv->driver_state);
out:
return ret;
}
static char *cnss_driver_event_to_str(enum cnss_driver_event_type type)
{
switch (type) {
case CNSS_DRIVER_EVENT_SERVER_ARRIVE:
return "SERVER_ARRIVE";
case CNSS_DRIVER_EVENT_SERVER_EXIT:
return "SERVER_EXIT";
case CNSS_DRIVER_EVENT_REQUEST_MEM:
return "REQUEST_MEM";
case CNSS_DRIVER_EVENT_FW_MEM_READY:
return "FW_MEM_READY";
case CNSS_DRIVER_EVENT_FW_READY:
return "FW_READY";
case CNSS_DRIVER_EVENT_COLD_BOOT_CAL_START:
return "COLD_BOOT_CAL_START";
case CNSS_DRIVER_EVENT_COLD_BOOT_CAL_DONE:
return "COLD_BOOT_CAL_DONE";
case CNSS_DRIVER_EVENT_REGISTER_DRIVER:
return "REGISTER_DRIVER";
case CNSS_DRIVER_EVENT_UNREGISTER_DRIVER:
return "UNREGISTER_DRIVER";
case CNSS_DRIVER_EVENT_RECOVERY:
return "RECOVERY";
case CNSS_DRIVER_EVENT_FORCE_FW_ASSERT:
return "FORCE_FW_ASSERT";
case CNSS_DRIVER_EVENT_POWER_UP:
return "POWER_UP";
case CNSS_DRIVER_EVENT_POWER_DOWN:
return "POWER_DOWN";
case CNSS_DRIVER_EVENT_IDLE_RESTART:
return "IDLE_RESTART";
case CNSS_DRIVER_EVENT_IDLE_SHUTDOWN:
return "IDLE_SHUTDOWN";
case CNSS_DRIVER_EVENT_IMS_WFC_CALL_IND:
return "IMS_WFC_CALL_IND";
case CNSS_DRIVER_EVENT_WLFW_TWT_CFG_IND:
return "WLFW_TWC_CFG_IND";
case CNSS_DRIVER_EVENT_QDSS_TRACE_REQ_MEM:
return "QDSS_TRACE_REQ_MEM";
case CNSS_DRIVER_EVENT_FW_MEM_FILE_SAVE:
return "FW_MEM_FILE_SAVE";
case CNSS_DRIVER_EVENT_QDSS_TRACE_FREE:
return "QDSS_TRACE_FREE";
case CNSS_DRIVER_EVENT_QDSS_TRACE_REQ_DATA:
return "QDSS_TRACE_REQ_DATA";
case CNSS_DRIVER_EVENT_MAX:
return "EVENT_MAX";
}
return "UNKNOWN";
};
int cnss_driver_event_post(struct cnss_plat_data *plat_priv,
enum cnss_driver_event_type type,
u32 flags, void *data)
{
struct cnss_driver_event *event;
unsigned long irq_flags;
int gfp = GFP_KERNEL;
int ret = 0;
if (!plat_priv)
return -ENODEV;
cnss_pr_dbg("Posting event: %s(%d)%s, state: 0x%lx flags: 0x%0x\n",
cnss_driver_event_to_str(type), type,
flags ? "-sync" : "", plat_priv->driver_state, flags);
if (type >= CNSS_DRIVER_EVENT_MAX) {
cnss_pr_err("Invalid Event type: %d, can't post", type);
return -EINVAL;
}
if (in_interrupt() || irqs_disabled())
gfp = GFP_ATOMIC;
event = kzalloc(sizeof(*event), gfp);
if (!event)
return -ENOMEM;
cnss_pm_stay_awake(plat_priv);
event->type = type;
event->data = data;
init_completion(&event->complete);
event->ret = CNSS_EVENT_PENDING;
event->sync = !!(flags & CNSS_EVENT_SYNC);
spin_lock_irqsave(&plat_priv->event_lock, irq_flags);
list_add_tail(&event->list, &plat_priv->event_list);
spin_unlock_irqrestore(&plat_priv->event_lock, irq_flags);
queue_work(plat_priv->event_wq, &plat_priv->event_work);
if (!(flags & CNSS_EVENT_SYNC))
goto out;
if (flags & CNSS_EVENT_UNKILLABLE)
wait_for_completion(&event->complete);
else if (flags & CNSS_EVENT_UNINTERRUPTIBLE)
ret = wait_for_completion_killable(&event->complete);
else
ret = wait_for_completion_interruptible(&event->complete);
cnss_pr_dbg("Completed event: %s(%d), state: 0x%lx, ret: %d/%d\n",
cnss_driver_event_to_str(type), type,
plat_priv->driver_state, ret, event->ret);
spin_lock_irqsave(&plat_priv->event_lock, irq_flags);
if (ret == -ERESTARTSYS && event->ret == CNSS_EVENT_PENDING) {
event->sync = false;
spin_unlock_irqrestore(&plat_priv->event_lock, irq_flags);
ret = -EINTR;
goto out;
}
spin_unlock_irqrestore(&plat_priv->event_lock, irq_flags);
ret = event->ret;
kfree(event);
out:
cnss_pm_relax(plat_priv);
return ret;
}
/**
* cnss_get_timeout - Get timeout for corresponding type.
* @plat_priv: Pointer to platform driver context.
* @cnss_timeout_type: Timeout type.
*
* Return: Timeout in milliseconds.
*/
unsigned int cnss_get_timeout(struct cnss_plat_data *plat_priv,
enum cnss_timeout_type timeout_type)
{
unsigned int qmi_timeout = cnss_get_qmi_timeout(plat_priv);
switch (timeout_type) {
case CNSS_TIMEOUT_QMI:
return qmi_timeout;
case CNSS_TIMEOUT_POWER_UP:
return (qmi_timeout << 2);
case CNSS_TIMEOUT_IDLE_RESTART:
/* In idle restart power up sequence, we have fw_boot_timer to
* handle FW initialization failure.
* It uses WLAN_MISSION_MODE_TIMEOUT, so setup 3x that time to
* account for FW dump collection and FW re-initialization on
* retry.
*/
return (qmi_timeout + WLAN_MISSION_MODE_TIMEOUT * 3);
case CNSS_TIMEOUT_CALIBRATION:
/* Similar to mission mode, in CBC if FW init fails
* fw recovery is tried. Thus return 2x the CBC timeout.
*/
return (qmi_timeout + WLAN_COLD_BOOT_CAL_TIMEOUT * 2);
case CNSS_TIMEOUT_WLAN_WATCHDOG:
return ((qmi_timeout << 1) + WLAN_WD_TIMEOUT_MS);
case CNSS_TIMEOUT_RDDM:
return CNSS_RDDM_TIMEOUT_MS;
case CNSS_TIMEOUT_RECOVERY:
return RECOVERY_TIMEOUT;
case CNSS_TIMEOUT_DAEMON_CONNECTION:
return qmi_timeout + CNSS_DAEMON_CONNECT_TIMEOUT_MS;
default:
return qmi_timeout;
}
}
unsigned int cnss_get_boot_timeout(struct device *dev)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL\n");
return 0;
}
return cnss_get_timeout(plat_priv, CNSS_TIMEOUT_QMI);
}
EXPORT_SYMBOL(cnss_get_boot_timeout);
int cnss_power_up(struct device *dev)
{
int ret = 0;
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
unsigned int timeout;
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL\n");
return -ENODEV;
}
cnss_pr_dbg("Powering up device\n");
ret = cnss_driver_event_post(plat_priv,
CNSS_DRIVER_EVENT_POWER_UP,
CNSS_EVENT_SYNC, NULL);
if (ret)
goto out;
if (plat_priv->device_id == QCA6174_DEVICE_ID)
goto out;
timeout = cnss_get_timeout(plat_priv, CNSS_TIMEOUT_POWER_UP);
reinit_completion(&plat_priv->power_up_complete);
ret = wait_for_completion_timeout(&plat_priv->power_up_complete,
msecs_to_jiffies(timeout));
if (!ret) {
cnss_pr_err("Timeout (%ums) waiting for power up to complete\n",
timeout);
ret = -EAGAIN;
goto out;
}
return 0;
out:
return ret;
}
EXPORT_SYMBOL(cnss_power_up);
int cnss_power_down(struct device *dev)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL\n");
return -ENODEV;
}
cnss_pr_dbg("Powering down device\n");
return cnss_driver_event_post(plat_priv,
CNSS_DRIVER_EVENT_POWER_DOWN,
CNSS_EVENT_SYNC, NULL);
}
EXPORT_SYMBOL(cnss_power_down);
int cnss_idle_restart(struct device *dev)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
unsigned int timeout;
int ret = 0;
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL\n");
return -ENODEV;
}
if (!mutex_trylock(&plat_priv->driver_ops_lock)) {
cnss_pr_dbg("Another driver operation is in progress, ignore idle restart\n");
return -EBUSY;
}
cnss_pr_dbg("Doing idle restart\n");
reinit_completion(&plat_priv->power_up_complete);
if (test_bit(CNSS_IN_REBOOT, &plat_priv->driver_state)) {
cnss_pr_dbg("Reboot or shutdown is in progress, ignore idle restart\n");
ret = -EINVAL;
goto out;
}
ret = cnss_driver_event_post(plat_priv,
CNSS_DRIVER_EVENT_IDLE_RESTART,
CNSS_EVENT_SYNC_UNINTERRUPTIBLE, NULL);
if (ret)
goto out;
if (plat_priv->device_id == QCA6174_DEVICE_ID) {
ret = cnss_bus_call_driver_probe(plat_priv);
goto out;
}
timeout = cnss_get_timeout(plat_priv, CNSS_TIMEOUT_IDLE_RESTART);
ret = wait_for_completion_timeout(&plat_priv->power_up_complete,
msecs_to_jiffies(timeout));
if (plat_priv->power_up_error) {
ret = plat_priv->power_up_error;
clear_bit(CNSS_DRIVER_IDLE_RESTART, &plat_priv->driver_state);
cnss_pr_dbg("Power up error:%d, exiting\n",
plat_priv->power_up_error);
goto out;
}
if (!ret) {
/* This exception occurs after attempting retry of FW recovery.
* Thus we can safely power off the device.
*/
cnss_fatal_err("Timeout (%ums) waiting for idle restart to complete\n",
timeout);
ret = -ETIMEDOUT;
cnss_power_down(dev);
CNSS_ASSERT(0);
goto out;
}
if (test_bit(CNSS_IN_REBOOT, &plat_priv->driver_state)) {
cnss_pr_dbg("Reboot or shutdown is in progress, ignore idle restart\n");
del_timer(&plat_priv->fw_boot_timer);
ret = -EINVAL;
goto out;
}
mutex_unlock(&plat_priv->driver_ops_lock);
return 0;
out:
mutex_unlock(&plat_priv->driver_ops_lock);
return ret;
}
EXPORT_SYMBOL(cnss_idle_restart);
int cnss_idle_shutdown(struct device *dev)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
unsigned int timeout;
int ret;
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL\n");
return -ENODEV;
}
if (test_bit(CNSS_IN_SUSPEND_RESUME, &plat_priv->driver_state)) {
cnss_pr_dbg("System suspend or resume in progress, ignore idle shutdown\n");
return -EAGAIN;
}
cnss_pr_dbg("Doing idle shutdown\n");
#ifdef CONFIG_SOC_S5E9925
exynos_pcie_l1ss_ctrl(0, PCIE_L1SS_CTRL_WIFI, EXYNOS_RC_ID);
#endif
if (!test_bit(CNSS_DRIVER_RECOVERY, &plat_priv->driver_state) &&
!test_bit(CNSS_DEV_ERR_NOTIFY, &plat_priv->driver_state))
goto skip_wait;
reinit_completion(&plat_priv->recovery_complete);
timeout = cnss_get_timeout(plat_priv, CNSS_TIMEOUT_RECOVERY);
ret = wait_for_completion_timeout(&plat_priv->recovery_complete,
msecs_to_jiffies(timeout));
if (!ret) {
cnss_pr_err("Timeout (%ums) waiting for recovery to complete\n",
timeout);
CNSS_ASSERT(0);
}
skip_wait:
return cnss_driver_event_post(plat_priv,
CNSS_DRIVER_EVENT_IDLE_SHUTDOWN,
CNSS_EVENT_SYNC_UNINTERRUPTIBLE, NULL);
}
EXPORT_SYMBOL(cnss_idle_shutdown);
static int cnss_get_resources(struct cnss_plat_data *plat_priv)
{
int ret = 0;
#ifdef CONFIG_SOC_S5E9925
struct regulator *wlan_vdd;
wlan_vdd = regulator_get(&plat_priv->plat_dev->dev, "vreg_wlan");
if (IS_ERR(wlan_vdd)) {
cnss_pr_err("get reulator filaure %d\n", ret);
goto out;
}
plat_priv->wlan_vdd = wlan_vdd;
#endif
ret = cnss_get_vreg_type(plat_priv, CNSS_VREG_PRIM);
if (ret) {
cnss_pr_err("Failed to get vreg, err = %d\n", ret);
goto out;
}
ret = cnss_get_clk(plat_priv);
if (ret) {
cnss_pr_err("Failed to get clocks, err = %d\n", ret);
goto put_vreg;
}
ret = cnss_get_pinctrl(plat_priv);
if (ret) {
cnss_pr_err("Failed to get pinctrl, err = %d\n", ret);
goto put_clk;
}
return 0;
put_clk:
cnss_put_clk(plat_priv);
put_vreg:
cnss_put_vreg_type(plat_priv, CNSS_VREG_PRIM);
out:
return ret;
}
static void cnss_put_resources(struct cnss_plat_data *plat_priv)
{
cnss_put_clk(plat_priv);
cnss_put_vreg_type(plat_priv, CNSS_VREG_PRIM);
}
#if IS_ENABLED(CONFIG_ESOC) && IS_ENABLED(CONFIG_MSM_SUBSYSTEM_RESTART)
static int cnss_modem_notifier_nb(struct notifier_block *nb,
unsigned long code,
void *ss_handle)
{
struct cnss_plat_data *plat_priv =
container_of(nb, struct cnss_plat_data, modem_nb);
struct cnss_esoc_info *esoc_info;
cnss_pr_dbg("Modem notifier: event %lu\n", code);
if (!plat_priv)
return NOTIFY_DONE;
esoc_info = &plat_priv->esoc_info;
if (code == SUBSYS_AFTER_POWERUP)
esoc_info->modem_current_status = 1;
else if (code == SUBSYS_BEFORE_SHUTDOWN)
esoc_info->modem_current_status = 0;
else
return NOTIFY_DONE;
if (!cnss_bus_call_driver_modem_status(plat_priv,
esoc_info->modem_current_status))
return NOTIFY_DONE;
return NOTIFY_OK;
}
static int cnss_register_esoc(struct cnss_plat_data *plat_priv)
{
int ret = 0;
struct device *dev;
struct cnss_esoc_info *esoc_info;
struct esoc_desc *esoc_desc;
const char *client_desc;
dev = &plat_priv->plat_dev->dev;
esoc_info = &plat_priv->esoc_info;
esoc_info->notify_modem_status =
of_property_read_bool(dev->of_node,
"qcom,notify-modem-status");
if (!esoc_info->notify_modem_status)
goto out;
ret = of_property_read_string_index(dev->of_node, "esoc-names", 0,
&client_desc);
if (ret) {
cnss_pr_dbg("esoc-names is not defined in DT, skip!\n");
} else {
esoc_desc = devm_register_esoc_client(dev, client_desc);
if (IS_ERR_OR_NULL(esoc_desc)) {
ret = PTR_RET(esoc_desc);
cnss_pr_err("Failed to register esoc_desc, err = %d\n",
ret);
goto out;
}
esoc_info->esoc_desc = esoc_desc;
}
plat_priv->modem_nb.notifier_call = cnss_modem_notifier_nb;
esoc_info->modem_current_status = 0;
esoc_info->modem_notify_handler =
subsys_notif_register_notifier(esoc_info->esoc_desc ?
esoc_info->esoc_desc->name :
"modem", &plat_priv->modem_nb);
if (IS_ERR(esoc_info->modem_notify_handler)) {
ret = PTR_ERR(esoc_info->modem_notify_handler);
cnss_pr_err("Failed to register esoc notifier, err = %d\n",
ret);
goto unreg_esoc;
}
return 0;
unreg_esoc:
if (esoc_info->esoc_desc)
devm_unregister_esoc_client(dev, esoc_info->esoc_desc);
out:
return ret;
}
static void cnss_unregister_esoc(struct cnss_plat_data *plat_priv)
{
struct device *dev;
struct cnss_esoc_info *esoc_info;
dev = &plat_priv->plat_dev->dev;
esoc_info = &plat_priv->esoc_info;
if (esoc_info->notify_modem_status)
subsys_notif_unregister_notifier
(esoc_info->modem_notify_handler,
&plat_priv->modem_nb);
if (esoc_info->esoc_desc)
devm_unregister_esoc_client(dev, esoc_info->esoc_desc);
}
#else
static inline int cnss_register_esoc(struct cnss_plat_data *plat_priv)
{
return 0;
}
static inline void cnss_unregister_esoc(struct cnss_plat_data *plat_priv) {}
#endif
#if IS_ENABLED(CONFIG_MSM_SUBSYSTEM_RESTART)
static int cnss_subsys_powerup(const struct subsys_desc *subsys_desc)
{
struct cnss_plat_data *plat_priv;
int ret = 0;
if (!subsys_desc->dev) {
cnss_pr_err("dev from subsys_desc is NULL\n");
return -ENODEV;
}
plat_priv = dev_get_drvdata(subsys_desc->dev);
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL\n");
return -ENODEV;
}
if (!plat_priv->driver_state) {
cnss_pr_dbg("Powerup is ignored\n");
return 0;
}
ret = cnss_bus_dev_powerup(plat_priv);
if (ret)
__pm_relax(plat_priv->recovery_ws);
return ret;
}
static int cnss_subsys_shutdown(const struct subsys_desc *subsys_desc,
bool force_stop)
{
struct cnss_plat_data *plat_priv;
if (!subsys_desc->dev) {
cnss_pr_err("dev from subsys_desc is NULL\n");
return -ENODEV;
}
plat_priv = dev_get_drvdata(subsys_desc->dev);
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL\n");
return -ENODEV;
}
if (!plat_priv->driver_state) {
cnss_pr_dbg("shutdown is ignored\n");
return 0;
}
return cnss_bus_dev_shutdown(plat_priv);
}
void cnss_device_crashed(struct device *dev)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
struct cnss_subsys_info *subsys_info;
if (!plat_priv)
return;
subsys_info = &plat_priv->subsys_info;
if (subsys_info->subsys_device) {
set_bit(CNSS_DRIVER_RECOVERY, &plat_priv->driver_state);
subsys_set_crash_status(subsys_info->subsys_device, true);
subsystem_restart_dev(subsys_info->subsys_device);
}
}
EXPORT_SYMBOL(cnss_device_crashed);
static void cnss_subsys_crash_shutdown(const struct subsys_desc *subsys_desc)
{
struct cnss_plat_data *plat_priv = dev_get_drvdata(subsys_desc->dev);
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL\n");
return;
}
cnss_bus_dev_crash_shutdown(plat_priv);
}
static int cnss_subsys_ramdump(int enable,
const struct subsys_desc *subsys_desc)
{
struct cnss_plat_data *plat_priv = dev_get_drvdata(subsys_desc->dev);
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL\n");
return -ENODEV;
}
if (!enable)
return 0;
return cnss_bus_dev_ramdump(plat_priv);
}
static void cnss_recovery_work_handler(struct work_struct *work)
{
}
#else
static void cnss_recovery_work_handler(struct work_struct *work)
{
int ret;
struct cnss_plat_data *plat_priv =
container_of(work, struct cnss_plat_data, recovery_work);
if (!plat_priv->recovery_enabled)
panic("subsys-restart: Resetting the SoC wlan crashed\n");
cnss_bus_dev_shutdown(plat_priv);
cnss_bus_dev_ramdump(plat_priv);
msleep(RECOVERY_DELAY_MS);
ret = cnss_bus_dev_powerup(plat_priv);
if (ret)
__pm_relax(plat_priv->recovery_ws);
return;
}
void cnss_device_crashed(struct device *dev)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
if (!plat_priv)
return;
set_bit(CNSS_DRIVER_RECOVERY, &plat_priv->driver_state);
schedule_work(&plat_priv->recovery_work);
}
EXPORT_SYMBOL(cnss_device_crashed);
#endif /* CONFIG_MSM_SUBSYSTEM_RESTART */
void *cnss_get_virt_ramdump_mem(struct device *dev, unsigned long *size)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
struct cnss_ramdump_info *ramdump_info;
if (!plat_priv)
return NULL;
ramdump_info = &plat_priv->ramdump_info;
*size = ramdump_info->ramdump_size;
return ramdump_info->ramdump_va;
}
EXPORT_SYMBOL(cnss_get_virt_ramdump_mem);
static const char *cnss_recovery_reason_to_str(enum cnss_recovery_reason reason)
{
switch (reason) {
case CNSS_REASON_DEFAULT:
return "DEFAULT";
case CNSS_REASON_LINK_DOWN:
return "LINK_DOWN";
case CNSS_REASON_RDDM:
return "RDDM";
case CNSS_REASON_TIMEOUT:
return "TIMEOUT";
}
return "UNKNOWN";
};
static int cnss_do_recovery(struct cnss_plat_data *plat_priv,
enum cnss_recovery_reason reason)
{
#ifdef CONFIG_SEC_SS_CNSS_FEATURE_SYSFS
cnss_pr_err("%s\n", ver_info);
#endif
plat_priv->recovery_count++;
if (plat_priv->device_id == QCA6174_DEVICE_ID)
goto self_recovery;
if (test_bit(SKIP_RECOVERY, &plat_priv->ctrl_params.quirks)) {
cnss_pr_dbg("Skip device recovery\n");
return 0;
}
/* FW recovery sequence has multiple steps and firmware load requires
* linux PM in awake state. Thus hold the cnss wake source until
* WLAN MISSION enabled. CNSS_TIMEOUT_RECOVERY option should cover all
* time taken in this process.
*/
pm_wakeup_ws_event(plat_priv->recovery_ws,
cnss_get_timeout(plat_priv, CNSS_TIMEOUT_RECOVERY),
true);
switch (reason) {
case CNSS_REASON_LINK_DOWN:
if (!cnss_bus_check_link_status(plat_priv)) {
cnss_pr_dbg("Skip link down recovery as link is already up\n");
return 0;
}
if (test_bit(LINK_DOWN_SELF_RECOVERY,
&plat_priv->ctrl_params.quirks))
goto self_recovery;
if (!cnss_bus_recover_link_down(plat_priv)) {
/* clear recovery bit here to avoid skipping
* the recovery work for RDDM later
*/
clear_bit(CNSS_DRIVER_RECOVERY,
&plat_priv->driver_state);
return 0;
}
break;
case CNSS_REASON_RDDM:
cnss_bus_collect_dump_info(plat_priv, false);
break;
case CNSS_REASON_DEFAULT:
case CNSS_REASON_TIMEOUT:
break;
default:
cnss_pr_err("Unsupported recovery reason: %s(%d)\n",
cnss_recovery_reason_to_str(reason), reason);
break;
}
cnss_bus_device_crashed(plat_priv);
return 0;
self_recovery:
cnss_pr_dbg("Going for self recovery\n");
cnss_bus_dev_shutdown(plat_priv);
if (test_bit(LINK_DOWN_SELF_RECOVERY, &plat_priv->ctrl_params.quirks))
clear_bit(LINK_DOWN_SELF_RECOVERY,
&plat_priv->ctrl_params.quirks);
cnss_bus_dev_powerup(plat_priv);
return 0;
}
static int cnss_driver_recovery_hdlr(struct cnss_plat_data *plat_priv,
void *data)
{
struct cnss_recovery_data *recovery_data = data;
int ret = 0;
cnss_pr_dbg("Driver recovery is triggered with reason: %s(%d)\n",
cnss_recovery_reason_to_str(recovery_data->reason),
recovery_data->reason);
if (!plat_priv->driver_state) {
cnss_pr_err("Improper driver state, ignore recovery\n");
ret = -EINVAL;
goto out;
}
if (test_bit(CNSS_IN_REBOOT, &plat_priv->driver_state)) {
cnss_pr_err("Reboot is in progress, ignore recovery\n");
ret = -EINVAL;
goto out;
}
if (test_bit(CNSS_DRIVER_RECOVERY, &plat_priv->driver_state)) {
cnss_pr_err("Recovery is already in progress\n");
CNSS_ASSERT(0);
ret = -EINVAL;
goto out;
}
if (test_bit(CNSS_DRIVER_UNLOADING, &plat_priv->driver_state) ||
test_bit(CNSS_DRIVER_IDLE_SHUTDOWN, &plat_priv->driver_state)) {
cnss_pr_err("Driver unload or idle shutdown is in progress, ignore recovery\n");
ret = -EINVAL;
goto out;
}
switch (plat_priv->device_id) {
case QCA6174_DEVICE_ID:
if (test_bit(CNSS_DRIVER_LOADING, &plat_priv->driver_state) ||
test_bit(CNSS_DRIVER_IDLE_RESTART,
&plat_priv->driver_state)) {
cnss_pr_err("Driver load or idle restart is in progress, ignore recovery\n");
ret = -EINVAL;
goto out;
}
break;
default:
if (!test_bit(CNSS_FW_READY, &plat_priv->driver_state)) {
set_bit(CNSS_FW_BOOT_RECOVERY,
&plat_priv->driver_state);
}
break;
}
set_bit(CNSS_DRIVER_RECOVERY, &plat_priv->driver_state);
ret = cnss_do_recovery(plat_priv, recovery_data->reason);
out:
kfree(data);
return ret;
}
int cnss_self_recovery(struct device *dev,
enum cnss_recovery_reason reason)
{
cnss_schedule_recovery(dev, reason);
return 0;
}
EXPORT_SYMBOL(cnss_self_recovery);
void cnss_schedule_recovery(struct device *dev,
enum cnss_recovery_reason reason)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
struct cnss_recovery_data *data;
int gfp = GFP_KERNEL;
if (!test_bit(CNSS_DEV_ERR_NOTIFY, &plat_priv->driver_state) &&
test_bit(CNSS_QMI_WLFW_CONNECTED, &plat_priv->driver_state))
cnss_bus_update_status(plat_priv, CNSS_FW_DOWN);
if (test_bit(CNSS_DRIVER_UNLOADING, &plat_priv->driver_state) ||
test_bit(CNSS_DRIVER_IDLE_SHUTDOWN, &plat_priv->driver_state)) {
cnss_pr_dbg("Driver unload or idle shutdown is in progress, ignore schedule recovery\n");
return;
}
if (in_interrupt() || irqs_disabled())
gfp = GFP_ATOMIC;
data = kzalloc(sizeof(*data), gfp);
if (!data)
return;
data->reason = reason;
cnss_driver_event_post(plat_priv,
CNSS_DRIVER_EVENT_RECOVERY,
0, data);
}
EXPORT_SYMBOL(cnss_schedule_recovery);
int cnss_force_fw_assert_async(struct device *dev)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL\n");
return -ENODEV;
}
if (plat_priv->device_id == QCA6174_DEVICE_ID) {
cnss_pr_info("Forced FW assert is not supported\n");
return -EOPNOTSUPP;
}
if (cnss_bus_is_device_down(plat_priv)) {
cnss_pr_info("Device is already in bad state, ignore force assert\n");
return 0;
}
if (test_bit(CNSS_DRIVER_RECOVERY, &plat_priv->driver_state)) {
cnss_pr_info("Recovery is already in progress, ignore forced FW assert\n");
return 0;
}
cnss_pr_info("Force assert (async)\n");
cnss_driver_event_post(plat_priv,
CNSS_DRIVER_EVENT_FORCE_FW_ASSERT,
0, NULL);
return 0;
}
EXPORT_SYMBOL(cnss_force_fw_assert_async);
int cnss_force_fw_assert(struct device *dev)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
bool post = (in_interrupt() || irqs_disabled());
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL\n");
return -ENODEV;
}
if (plat_priv->device_id == QCA6174_DEVICE_ID) {
cnss_pr_info("Forced FW assert is not supported\n");
return -EOPNOTSUPP;
}
if (cnss_bus_is_device_down(plat_priv)) {
cnss_pr_info("Device is already in bad state, ignore force assert\n");
return 0;
}
if (test_bit(CNSS_DRIVER_RECOVERY, &plat_priv->driver_state)) {
cnss_pr_info("Recovery is already in progress, ignore forced FW assert\n");
return 0;
}
cnss_pr_info("Force assert (%s)\n", post ? "async" : "sync");
if (post)
cnss_driver_event_post(plat_priv,
CNSS_DRIVER_EVENT_FORCE_FW_ASSERT,
0, NULL);
else
cnss_bus_force_fw_assert_hdlr(plat_priv);
return 0;
}
EXPORT_SYMBOL(cnss_force_fw_assert);
int cnss_force_collect_rddm(struct device *dev)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
unsigned int timeout;
int ret = 0;
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL\n");
return -ENODEV;
}
if (plat_priv->device_id == QCA6174_DEVICE_ID) {
cnss_pr_info("Force collect rddm is not supported\n");
return -EOPNOTSUPP;
}
if (cnss_bus_is_device_down(plat_priv)) {
cnss_pr_info("Device is already in bad state, wait to collect rddm\n");
goto wait_rddm;
}
if (test_bit(CNSS_DRIVER_RECOVERY, &plat_priv->driver_state)) {
cnss_pr_info("Recovery is already in progress, wait to collect rddm\n");
goto wait_rddm;
}
if (test_bit(CNSS_DRIVER_LOADING, &plat_priv->driver_state) ||
test_bit(CNSS_DRIVER_UNLOADING, &plat_priv->driver_state) ||
test_bit(CNSS_DRIVER_IDLE_RESTART, &plat_priv->driver_state) ||
test_bit(CNSS_DRIVER_IDLE_SHUTDOWN, &plat_priv->driver_state)) {
cnss_pr_info("Loading/Unloading/idle restart/shutdown is in progress, ignore forced collect rddm\n");
return 0;
}
ret = cnss_bus_force_fw_assert_hdlr(plat_priv);
if (ret)
return ret;
wait_rddm:
reinit_completion(&plat_priv->rddm_complete);
timeout = cnss_get_timeout(plat_priv, CNSS_TIMEOUT_RDDM);
ret = wait_for_completion_timeout(&plat_priv->rddm_complete,
msecs_to_jiffies(timeout));
if (!ret) {
cnss_pr_err("Timeout (%ums) waiting for RDDM to complete\n",
timeout);
ret = -ETIMEDOUT;
} else if (ret > 0) {
ret = 0;
}
return ret;
}
EXPORT_SYMBOL(cnss_force_collect_rddm);
int cnss_qmi_send_get(struct device *dev)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
if (!test_bit(CNSS_QMI_WLFW_CONNECTED, &plat_priv->driver_state))
return 0;
return cnss_bus_qmi_send_get(plat_priv);
}
EXPORT_SYMBOL(cnss_qmi_send_get);
int cnss_qmi_send_put(struct device *dev)
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
if (!test_bit(CNSS_QMI_WLFW_CONNECTED, &plat_priv->driver_state))
return 0;
return cnss_bus_qmi_send_put(plat_priv);
}
EXPORT_SYMBOL(cnss_qmi_send_put);
int cnss_qmi_send(struct device *dev, int type, void *cmd,
int cmd_len, void *cb_ctx,
int (*cb)(void *ctx, void *event, int event_len))
{
struct cnss_plat_data *plat_priv = cnss_bus_dev_to_plat_priv(dev);
int ret;
if (!plat_priv)
return -ENODEV;
if (!test_bit(CNSS_QMI_WLFW_CONNECTED, &plat_priv->driver_state))
return -EINVAL;
plat_priv->get_info_cb = cb;
plat_priv->get_info_cb_ctx = cb_ctx;
ret = cnss_wlfw_get_info_send_sync(plat_priv, type, cmd, cmd_len);
if (ret) {
plat_priv->get_info_cb = NULL;
plat_priv->get_info_cb_ctx = NULL;
}
return ret;
}
EXPORT_SYMBOL(cnss_qmi_send);
static int cnss_cold_boot_cal_start_hdlr(struct cnss_plat_data *plat_priv)
{
int ret = 0;
u32 retry = 0;
#ifdef CONFIG_SEC_SS_CNSS_FEATURE_SYSFS
if (!wait_for_completion_timeout(
&plat_priv->macloader_done,
msecs_to_jiffies(MACLOADER_TIMEOUT)))
cnss_pr_info("macloader_done timeout\n");
#endif /* CONFIG_SEC_SS_CNSS_FEATURE_SYSFS */
if (test_bit(CNSS_COLD_BOOT_CAL_DONE, &plat_priv->driver_state)) {
cnss_pr_dbg("Calibration complete. Ignore calibration req\n");
goto out;
} else if (test_bit(CNSS_IN_COLD_BOOT_CAL, &plat_priv->driver_state)) {
cnss_pr_dbg("Calibration in progress. Ignore new calibration req\n");
goto out;
}
if (test_bit(CNSS_DRIVER_LOADING, &plat_priv->driver_state) ||
test_bit(CNSS_DRIVER_PROBED, &plat_priv->driver_state) ||
test_bit(CNSS_FW_READY, &plat_priv->driver_state)) {
cnss_pr_err("WLAN in mission mode before cold boot calibration\n");
CNSS_ASSERT(0);
return -EINVAL;
}
while (retry++ < CNSS_CAL_START_PROBE_WAIT_RETRY_MAX) {
if (test_bit(CNSS_PCI_PROBE_DONE, &plat_priv->driver_state))
break;
msleep(CNSS_CAL_START_PROBE_WAIT_MS);
if (retry == CNSS_CAL_START_PROBE_WAIT_RETRY_MAX) {
cnss_pr_err("Calibration start failed as PCI probe not complete\n");
CNSS_ASSERT(0);
ret = -EINVAL;
goto mark_cal_fail;
}
}
set_bit(CNSS_IN_COLD_BOOT_CAL, &plat_priv->driver_state);
reinit_completion(&plat_priv->cal_complete);
ret = cnss_bus_dev_powerup(plat_priv);
mark_cal_fail:
if (ret) {
complete(&plat_priv->cal_complete);
clear_bit(CNSS_IN_COLD_BOOT_CAL, &plat_priv->driver_state);
/* Set CBC done in driver state to mark attempt and note error
* since calibration cannot be retried at boot.
*/
plat_priv->cal_done = CNSS_CAL_FAILURE;
set_bit(CNSS_COLD_BOOT_CAL_DONE, &plat_priv->driver_state);
}
out:
return ret;
}
static int cnss_cold_boot_cal_done_hdlr(struct cnss_plat_data *plat_priv,
void *data)
{
struct cnss_cal_info *cal_info = data;
if (!test_bit(CNSS_IN_COLD_BOOT_CAL, &plat_priv->driver_state) ||
test_bit(CNSS_COLD_BOOT_CAL_DONE, &plat_priv->driver_state))
goto out;
switch (cal_info->cal_status) {
case CNSS_CAL_DONE:
cnss_pr_dbg("Calibration completed successfully\n");
plat_priv->cal_done = true;
break;
case CNSS_CAL_TIMEOUT:
case CNSS_CAL_FAILURE:
cnss_pr_dbg("Calibration failed. Status: %d, force shutdown\n",
cal_info->cal_status);
break;
default:
cnss_pr_err("Unknown calibration status: %u\n",
cal_info->cal_status);
break;
}
cnss_wlfw_wlan_mode_send_sync(plat_priv, CNSS_OFF);
cnss_bus_free_qdss_mem(plat_priv);
cnss_release_antenna_sharing(plat_priv);
cnss_bus_dev_shutdown(plat_priv);
msleep(COLD_BOOT_CAL_SHUTDOWN_DELAY_MS);
complete(&plat_priv->cal_complete);
clear_bit(CNSS_IN_COLD_BOOT_CAL, &plat_priv->driver_state);
set_bit(CNSS_COLD_BOOT_CAL_DONE, &plat_priv->driver_state);
if (cal_info->cal_status == CNSS_CAL_DONE) {
cnss_cal_mem_upload_to_file(plat_priv);
if (cancel_delayed_work_sync(&plat_priv->wlan_reg_driver_work)
) {
cnss_pr_dbg("Schedule WLAN driver load\n");
schedule_delayed_work(&plat_priv->wlan_reg_driver_work,
0);
}
}
out:
kfree(data);
return 0;
}
static int cnss_power_up_hdlr(struct cnss_plat_data *plat_priv)
{
int ret;
ret = cnss_bus_dev_powerup(plat_priv);
if (ret)
clear_bit(CNSS_DRIVER_IDLE_RESTART, &plat_priv->driver_state);
return ret;
}
static int cnss_power_down_hdlr(struct cnss_plat_data *plat_priv)
{
cnss_bus_dev_shutdown(plat_priv);
return 0;
}
static int cnss_qdss_trace_req_mem_hdlr(struct cnss_plat_data *plat_priv)
{
int ret = 0;
ret = cnss_bus_alloc_qdss_mem(plat_priv);
if (ret < 0)
return ret;
return cnss_wlfw_qdss_trace_mem_info_send_sync(plat_priv);
}
static void *cnss_get_fw_mem_pa_to_va(struct cnss_fw_mem *fw_mem,
u32 mem_seg_len, u64 pa, u32 size)
{
int i = 0;
u64 offset = 0;
void *va = NULL;
u64 local_pa;
u32 local_size;
for (i = 0; i < mem_seg_len; i++) {
local_pa = (u64)fw_mem[i].pa;
local_size = (u32)fw_mem[i].size;
if (pa == local_pa && size <= local_size) {
va = fw_mem[i].va;
break;
}
if (pa > local_pa &&
pa < local_pa + local_size &&
pa + size <= local_pa + local_size) {
offset = pa - local_pa;
va = fw_mem[i].va + offset;
break;
}
}
return va;
}
static int cnss_fw_mem_file_save_hdlr(struct cnss_plat_data *plat_priv,
void *data)
{
struct cnss_qmi_event_fw_mem_file_save_data *event_data = data;
struct cnss_fw_mem *fw_mem_seg;
int ret = 0L;
void *va = NULL;
u32 i, fw_mem_seg_len;
switch (event_data->mem_type) {
case QMI_WLFW_MEM_TYPE_DDR_V01:
if (!plat_priv->fw_mem_seg_len)
goto invalid_mem_save;
fw_mem_seg = plat_priv->fw_mem;
fw_mem_seg_len = plat_priv->fw_mem_seg_len;
break;
case QMI_WLFW_MEM_QDSS_V01:
if (!plat_priv->qdss_mem_seg_len)
goto invalid_mem_save;
fw_mem_seg = plat_priv->qdss_mem;
fw_mem_seg_len = plat_priv->qdss_mem_seg_len;
break;
default:
goto invalid_mem_save;
}
for (i = 0; i < event_data->mem_seg_len; i++) {
va = cnss_get_fw_mem_pa_to_va(fw_mem_seg, fw_mem_seg_len,
event_data->mem_seg[i].addr,
event_data->mem_seg[i].size);
if (!va) {
cnss_pr_err("Fail to find matching va of pa %pa for mem type: %d\n",
&event_data->mem_seg[i].addr,
event_data->mem_type);
ret = -EINVAL;
break;
}
ret = cnss_genl_send_msg(va, CNSS_GENL_MSG_TYPE_QDSS,
event_data->file_name,
event_data->mem_seg[i].size);
if (ret < 0) {
cnss_pr_err("Fail to save fw mem data: %d\n",
ret);
break;
}
}
kfree(data);
return ret;
invalid_mem_save:
cnss_pr_err("FW Mem type %d not allocated. Invalid save request\n",
event_data->mem_type);
kfree(data);
return -EINVAL;
}
static int cnss_qdss_trace_free_hdlr(struct cnss_plat_data *plat_priv)
{
cnss_bus_free_qdss_mem(plat_priv);
return 0;
}
static int cnss_qdss_trace_req_data_hdlr(struct cnss_plat_data *plat_priv,
void *data)
{
int ret = 0;
struct cnss_qmi_event_fw_mem_file_save_data *event_data = data;
if (!plat_priv)
return -ENODEV;
ret = cnss_wlfw_qdss_data_send_sync(plat_priv, event_data->file_name,
event_data->total_size);
kfree(data);
return ret;
}
static void cnss_driver_event_work(struct work_struct *work)
{
struct cnss_plat_data *plat_priv =
container_of(work, struct cnss_plat_data, event_work);
struct cnss_driver_event *event;
unsigned long flags;
int ret = 0;
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL!\n");
return;
}
cnss_pm_stay_awake(plat_priv);
spin_lock_irqsave(&plat_priv->event_lock, flags);
while (!list_empty(&plat_priv->event_list)) {
event = list_first_entry(&plat_priv->event_list,
struct cnss_driver_event, list);
list_del(&event->list);
spin_unlock_irqrestore(&plat_priv->event_lock, flags);
cnss_pr_dbg("Processing driver event: %s%s(%d), state: 0x%lx\n",
cnss_driver_event_to_str(event->type),
event->sync ? "-sync" : "", event->type,
plat_priv->driver_state);
switch (event->type) {
case CNSS_DRIVER_EVENT_SERVER_ARRIVE:
ret = cnss_wlfw_server_arrive(plat_priv, event->data);
break;
case CNSS_DRIVER_EVENT_SERVER_EXIT:
ret = cnss_wlfw_server_exit(plat_priv);
break;
case CNSS_DRIVER_EVENT_REQUEST_MEM:
ret = cnss_bus_alloc_fw_mem(plat_priv);
if (ret)
break;
ret = cnss_wlfw_respond_mem_send_sync(plat_priv);
break;
case CNSS_DRIVER_EVENT_FW_MEM_READY:
ret = cnss_fw_mem_ready_hdlr(plat_priv);
break;
case CNSS_DRIVER_EVENT_FW_READY:
ret = cnss_fw_ready_hdlr(plat_priv);
break;
case CNSS_DRIVER_EVENT_COLD_BOOT_CAL_START:
ret = cnss_cold_boot_cal_start_hdlr(plat_priv);
break;
case CNSS_DRIVER_EVENT_COLD_BOOT_CAL_DONE:
ret = cnss_cold_boot_cal_done_hdlr(plat_priv,
event->data);
break;
case CNSS_DRIVER_EVENT_REGISTER_DRIVER:
ret = cnss_bus_register_driver_hdlr(plat_priv,
event->data);
break;
case CNSS_DRIVER_EVENT_UNREGISTER_DRIVER:
ret = cnss_bus_unregister_driver_hdlr(plat_priv);
break;
case CNSS_DRIVER_EVENT_RECOVERY:
ret = cnss_driver_recovery_hdlr(plat_priv,
event->data);
break;
case CNSS_DRIVER_EVENT_FORCE_FW_ASSERT:
ret = cnss_bus_force_fw_assert_hdlr(plat_priv);
break;
case CNSS_DRIVER_EVENT_IDLE_RESTART:
set_bit(CNSS_DRIVER_IDLE_RESTART,
&plat_priv->driver_state);
/* fall through */
case CNSS_DRIVER_EVENT_POWER_UP:
ret = cnss_power_up_hdlr(plat_priv);
break;
case CNSS_DRIVER_EVENT_IDLE_SHUTDOWN:
set_bit(CNSS_DRIVER_IDLE_SHUTDOWN,
&plat_priv->driver_state);
/* fall through */
case CNSS_DRIVER_EVENT_POWER_DOWN:
ret = cnss_power_down_hdlr(plat_priv);
break;
case CNSS_DRIVER_EVENT_IMS_WFC_CALL_IND:
ret = cnss_process_wfc_call_ind_event(plat_priv,
event->data);
break;
case CNSS_DRIVER_EVENT_WLFW_TWT_CFG_IND:
ret = cnss_process_twt_cfg_ind_event(plat_priv,
event->data);
break;
case CNSS_DRIVER_EVENT_QDSS_TRACE_REQ_MEM:
ret = cnss_qdss_trace_req_mem_hdlr(plat_priv);
break;
case CNSS_DRIVER_EVENT_FW_MEM_FILE_SAVE:
ret = cnss_fw_mem_file_save_hdlr(plat_priv,
event->data);
break;
case CNSS_DRIVER_EVENT_QDSS_TRACE_FREE:
ret = cnss_qdss_trace_free_hdlr(plat_priv);
break;
case CNSS_DRIVER_EVENT_QDSS_TRACE_REQ_DATA:
ret = cnss_qdss_trace_req_data_hdlr(plat_priv,
event->data);
break;
default:
cnss_pr_err("Invalid driver event type: %d",
event->type);
kfree(event);
spin_lock_irqsave(&plat_priv->event_lock, flags);
continue;
}
spin_lock_irqsave(&plat_priv->event_lock, flags);
if (event->sync) {
event->ret = ret;
complete(&event->complete);
continue;
}
spin_unlock_irqrestore(&plat_priv->event_lock, flags);
kfree(event);
spin_lock_irqsave(&plat_priv->event_lock, flags);
}
spin_unlock_irqrestore(&plat_priv->event_lock, flags);
cnss_pm_relax(plat_priv);
}
int cnss_va_to_pa(struct device *dev, size_t size, void *va, dma_addr_t dma,
phys_addr_t *pa, unsigned long attrs)
{
struct sg_table sgt;
int ret;
ret = dma_get_sgtable_attrs(dev, &sgt, va, dma, size, attrs);
if (ret) {
cnss_pr_err("Failed to get sgtable for va: 0x%pK, dma: %pa, size: 0x%zx, attrs: 0x%x\n",
va, &dma, size, attrs);
return -EINVAL;
}
*pa = page_to_phys(sg_page(sgt.sgl));
sg_free_table(&sgt);
return 0;
}
#if IS_ENABLED(CONFIG_MSM_SUBSYSTEM_RESTART)
int cnss_register_subsys(struct cnss_plat_data *plat_priv)
{
int ret = 0;
struct cnss_subsys_info *subsys_info;
subsys_info = &plat_priv->subsys_info;
subsys_info->subsys_desc.name = "wlan";
subsys_info->subsys_desc.owner = THIS_MODULE;
subsys_info->subsys_desc.powerup = cnss_subsys_powerup;
subsys_info->subsys_desc.shutdown = cnss_subsys_shutdown;
subsys_info->subsys_desc.ramdump = cnss_subsys_ramdump;
subsys_info->subsys_desc.crash_shutdown = cnss_subsys_crash_shutdown;
subsys_info->subsys_desc.dev = &plat_priv->plat_dev->dev;
subsys_info->subsys_device = subsys_register(&subsys_info->subsys_desc);
if (IS_ERR(subsys_info->subsys_device)) {
ret = PTR_ERR(subsys_info->subsys_device);
cnss_pr_err("Failed to register subsys, err = %d\n", ret);
goto out;
}
subsys_info->subsys_handle =
subsystem_get(subsys_info->subsys_desc.name);
if (!subsys_info->subsys_handle) {
cnss_pr_err("Failed to get subsys_handle!\n");
ret = -EINVAL;
goto unregister_subsys;
} else if (IS_ERR(subsys_info->subsys_handle)) {
ret = PTR_ERR(subsys_info->subsys_handle);
cnss_pr_err("Failed to do subsystem_get, err = %d\n", ret);
goto unregister_subsys;
}
return 0;
unregister_subsys:
subsys_unregister(subsys_info->subsys_device);
out:
return ret;
}
void cnss_unregister_subsys(struct cnss_plat_data *plat_priv)
{
struct cnss_subsys_info *subsys_info;
subsys_info = &plat_priv->subsys_info;
subsystem_put(subsys_info->subsys_handle);
subsys_unregister(subsys_info->subsys_device);
}
static void *cnss_create_ramdump_device(struct cnss_plat_data *plat_priv)
{
struct cnss_subsys_info *subsys_info = &plat_priv->subsys_info;
return create_ramdump_device(subsys_info->subsys_desc.name,
subsys_info->subsys_desc.dev);
}
static void cnss_destroy_ramdump_device(struct cnss_plat_data *plat_priv,
void *ramdump_dev)
{
destroy_ramdump_device(ramdump_dev);
}
int cnss_do_ramdump(struct cnss_plat_data *plat_priv)
{
struct cnss_ramdump_info *ramdump_info = &plat_priv->ramdump_info;
struct ramdump_segment segment;
memset(&segment, 0, sizeof(segment));
segment.v_address = (void __iomem *)ramdump_info->ramdump_va;
segment.size = ramdump_info->ramdump_size;
return qcom_ramdump(ramdump_info->ramdump_dev, &segment, 1);
}
int cnss_do_elf_ramdump(struct cnss_plat_data *plat_priv)
{
struct cnss_ramdump_info_v2 *info_v2 = &plat_priv->ramdump_info_v2;
struct cnss_dump_data *dump_data = &info_v2->dump_data;
struct cnss_dump_seg *dump_seg = info_v2->dump_data_vaddr;
struct ramdump_segment *ramdump_segs, *s;
struct cnss_dump_meta_info meta_info = {0};
int i, ret = 0;
ramdump_segs = kcalloc(dump_data->nentries + 1,
sizeof(*ramdump_segs),
GFP_KERNEL);
if (!ramdump_segs)
return -ENOMEM;
s = ramdump_segs + 1;
for (i = 0; i < dump_data->nentries; i++) {
if (dump_seg->type >= CNSS_FW_DUMP_TYPE_MAX) {
cnss_pr_err("Unsupported dump type: %d",
dump_seg->type);
continue;
}
if (meta_info.entry[dump_seg->type].entry_start == 0) {
meta_info.entry[dump_seg->type].type = dump_seg->type;
meta_info.entry[dump_seg->type].entry_start = i + 1;
}
meta_info.entry[dump_seg->type].entry_num++;
s->address = dump_seg->address;
s->v_address = (void __iomem *)dump_seg->v_address;
s->size = dump_seg->size;
s++;
dump_seg++;
}
meta_info.magic = CNSS_RAMDUMP_MAGIC;
meta_info.version = CNSS_RAMDUMP_VERSION;
meta_info.chipset = plat_priv->device_id;
meta_info.total_entries = CNSS_FW_DUMP_TYPE_MAX;
ramdump_segs->v_address = (void __iomem *)(&meta_info);
ramdump_segs->size = sizeof(meta_info);
ret = qcom_elf_ramdump(info_v2->ramdump_dev, ramdump_segs,
dump_data->nentries + 1);
kfree(ramdump_segs);
return ret;
}
#else
static int cnss_panic_handler(struct notifier_block *nb, unsigned long action,
void *data)
{
struct cnss_plat_data *plat_priv =
container_of(nb, struct cnss_plat_data, panic_nb);
cnss_bus_dev_crash_shutdown(plat_priv);
return NOTIFY_DONE;
}
int cnss_register_subsys(struct cnss_plat_data *plat_priv)
{
int ret;
if (!plat_priv)
return -ENODEV;
plat_priv->panic_nb.notifier_call = cnss_panic_handler;
ret = atomic_notifier_chain_register(&panic_notifier_list,
&plat_priv->panic_nb);
if (ret) {
cnss_pr_err("Failed to register panic handler\n");
return -EINVAL;
}
return 0;
}
void cnss_unregister_subsys(struct cnss_plat_data *plat_priv)
{
int ret;
ret = atomic_notifier_chain_unregister(&panic_notifier_list,
&plat_priv->panic_nb);
if (ret)
cnss_pr_err("Failed to unregister panic handler\n");
}
#if IS_ENABLED(CONFIG_QCOM_MEMORY_DUMP_V2)
static void *cnss_create_ramdump_device(struct cnss_plat_data *plat_priv)
{
return &plat_priv->plat_dev->dev;
}
static void cnss_destroy_ramdump_device(struct cnss_plat_data *plat_priv,
void *ramdump_dev)
{
}
#endif
#if IS_ENABLED(CONFIG_QCOM_RAMDUMP)
int cnss_do_ramdump(struct cnss_plat_data *plat_priv)
{
struct cnss_ramdump_info *ramdump_info = &plat_priv->ramdump_info;
struct qcom_dump_segment segment;
struct list_head head;
INIT_LIST_HEAD(&head);
memset(&segment, 0, sizeof(segment));
segment.va = ramdump_info->ramdump_va;
segment.size = ramdump_info->ramdump_size;
list_add(&segment.node, &head);
return qcom_dump(&head, ramdump_info->ramdump_dev);
}
int cnss_do_elf_ramdump(struct cnss_plat_data *plat_priv)
{
struct cnss_ramdump_info_v2 *info_v2 = &plat_priv->ramdump_info_v2;
struct cnss_dump_data *dump_data = &info_v2->dump_data;
struct cnss_dump_seg *dump_seg = info_v2->dump_data_vaddr;
struct qcom_dump_segment *seg;
struct cnss_dump_meta_info meta_info = {0};
struct list_head head;
int i, ret = 0;
if (!dump_enabled()) {
cnss_pr_info("Dump collection is not enabled\n");
return ret;
}
INIT_LIST_HEAD(&head);
for (i = 0; i < dump_data->nentries; i++) {
if (dump_seg->type >= CNSS_FW_DUMP_TYPE_MAX) {
cnss_pr_err("Unsupported dump type: %d",
dump_seg->type);
continue;
}
seg = kcalloc(1, sizeof(*seg), GFP_KERNEL);
if (!seg)
continue;
if (meta_info.entry[dump_seg->type].entry_start == 0) {
meta_info.entry[dump_seg->type].type = dump_seg->type;
meta_info.entry[dump_seg->type].entry_start = i + 1;
}
meta_info.entry[dump_seg->type].entry_num++;
seg->da = dump_seg->address;
seg->va = dump_seg->v_address;
seg->size = dump_seg->size;
list_add_tail(&seg->node, &head);
dump_seg++;
}
seg = kcalloc(1, sizeof(*seg), GFP_KERNEL);
if (!seg)
goto do_elf_dump;
meta_info.magic = CNSS_RAMDUMP_MAGIC;
meta_info.version = CNSS_RAMDUMP_VERSION;
meta_info.chipset = plat_priv->device_id;
meta_info.total_entries = CNSS_FW_DUMP_TYPE_MAX;
seg->va = &meta_info;
seg->size = sizeof(meta_info);
list_add(&seg->node, &head);
do_elf_dump:
ret = qcom_elf_dump(&head, info_v2->ramdump_dev);
while (!list_empty(&head)) {
seg = list_first_entry(&head, struct qcom_dump_segment, node);
list_del(&seg->node);
kfree(seg);
}
return ret;
}
#else
int cnss_do_ramdump(struct cnss_plat_data *plat_priv)
{
return 0;
}
int cnss_do_elf_ramdump(struct cnss_plat_data *plat_priv)
{
return 0;
}
#endif /* CONFIG_QCOM_RAMDUMP */
#endif /* CONFIG_MSM_SUBSYSTEM_RESTART */
#if IS_ENABLED(CONFIG_QCOM_MEMORY_DUMP_V2)
static int cnss_init_dump_entry(struct cnss_plat_data *plat_priv)
{
struct cnss_ramdump_info *ramdump_info;
struct msm_dump_entry dump_entry;
ramdump_info = &plat_priv->ramdump_info;
ramdump_info->dump_data.addr = ramdump_info->ramdump_pa;
ramdump_info->dump_data.len = ramdump_info->ramdump_size;
ramdump_info->dump_data.version = CNSS_DUMP_FORMAT_VER;
ramdump_info->dump_data.magic = CNSS_DUMP_MAGIC_VER_V2;
strlcpy(ramdump_info->dump_data.name, CNSS_DUMP_NAME,
sizeof(ramdump_info->dump_data.name));
dump_entry.id = MSM_DUMP_DATA_CNSS_WLAN;
dump_entry.addr = virt_to_phys(&ramdump_info->dump_data);
return msm_dump_data_register_nominidump(MSM_DUMP_TABLE_APPS,
&dump_entry);
}
static int cnss_register_ramdump_v1(struct cnss_plat_data *plat_priv)
{
int ret = 0;
struct device *dev;
struct cnss_ramdump_info *ramdump_info;
u32 ramdump_size = 0;
dev = &plat_priv->plat_dev->dev;
ramdump_info = &plat_priv->ramdump_info;
if (of_property_read_u32(dev->of_node, "qcom,wlan-ramdump-dynamic",
&ramdump_size) == 0) {
ramdump_info->ramdump_va =
dma_alloc_coherent(dev, ramdump_size,
&ramdump_info->ramdump_pa,
GFP_KERNEL);
if (ramdump_info->ramdump_va)
ramdump_info->ramdump_size = ramdump_size;
}
cnss_pr_dbg("ramdump va: %pK, pa: %pa\n",
ramdump_info->ramdump_va, &ramdump_info->ramdump_pa);
if (ramdump_info->ramdump_size == 0) {
cnss_pr_info("Ramdump will not be collected");
goto out;
}
ret = cnss_init_dump_entry(plat_priv);
if (ret) {
cnss_pr_err("Failed to setup dump table, err = %d\n", ret);
goto free_ramdump;
}
ramdump_info->ramdump_dev = cnss_create_ramdump_device(plat_priv);
if (!ramdump_info->ramdump_dev) {
cnss_pr_err("Failed to create ramdump device!");
ret = -ENOMEM;
goto free_ramdump;
}
return 0;
free_ramdump:
dma_free_coherent(dev, ramdump_info->ramdump_size,
ramdump_info->ramdump_va, ramdump_info->ramdump_pa);
out:
return ret;
}
static void cnss_unregister_ramdump_v1(struct cnss_plat_data *plat_priv)
{
struct device *dev;
struct cnss_ramdump_info *ramdump_info;
dev = &plat_priv->plat_dev->dev;
ramdump_info = &plat_priv->ramdump_info;
if (ramdump_info->ramdump_dev)
cnss_destroy_ramdump_device(plat_priv,
ramdump_info->ramdump_dev);
if (ramdump_info->ramdump_va)
dma_free_coherent(dev, ramdump_info->ramdump_size,
ramdump_info->ramdump_va,
ramdump_info->ramdump_pa);
}
/**
* cnss_ignore_dump_data_reg_fail - Ignore Ramdump table register failure
* @ret: Error returned by msm_dump_data_register_nominidump
*
* For Lahaina GKI boot, we dont have support for mem dump feature. So
* ignore failure.
*
* Return: Same given error code if mem dump feature enabled, 0 otherwise
*/
static int cnss_ignore_dump_data_reg_fail(int ret)
{
return ret;
}
static int cnss_register_ramdump_v2(struct cnss_plat_data *plat_priv)
{
int ret = 0;
struct cnss_ramdump_info_v2 *info_v2;
struct cnss_dump_data *dump_data;
struct msm_dump_entry dump_entry;
struct device *dev = &plat_priv->plat_dev->dev;
u32 ramdump_size = 0;
info_v2 = &plat_priv->ramdump_info_v2;
dump_data = &info_v2->dump_data;
if (of_property_read_u32(dev->of_node, "qcom,wlan-ramdump-dynamic",
&ramdump_size) == 0)
info_v2->ramdump_size = ramdump_size;
cnss_pr_dbg("Ramdump size 0x%lx\n", info_v2->ramdump_size);
info_v2->dump_data_vaddr = kzalloc(CNSS_DUMP_DESC_SIZE, GFP_KERNEL);
if (!info_v2->dump_data_vaddr)
return -ENOMEM;
dump_data->paddr = virt_to_phys(info_v2->dump_data_vaddr);
dump_data->version = CNSS_DUMP_FORMAT_VER_V2;
dump_data->magic = CNSS_DUMP_MAGIC_VER_V2;
dump_data->seg_version = CNSS_DUMP_SEG_VER;
strlcpy(dump_data->name, CNSS_DUMP_NAME,
sizeof(dump_data->name));
dump_entry.id = MSM_DUMP_DATA_CNSS_WLAN;
dump_entry.addr = virt_to_phys(dump_data);
ret = msm_dump_data_register_nominidump(MSM_DUMP_TABLE_APPS,
&dump_entry);
if (ret) {
ret = cnss_ignore_dump_data_reg_fail(ret);
cnss_pr_err("Failed to setup dump table, %s (%d)\n",
ret ? "Error" : "Ignoring", ret);
goto free_ramdump;
}
info_v2->ramdump_dev = cnss_create_ramdump_device(plat_priv);
if (!info_v2->ramdump_dev) {
cnss_pr_err("Failed to create ramdump device!\n");
ret = -ENOMEM;
goto free_ramdump;
}
return 0;
free_ramdump:
kfree(info_v2->dump_data_vaddr);
info_v2->dump_data_vaddr = NULL;
return ret;
}
static void cnss_unregister_ramdump_v2(struct cnss_plat_data *plat_priv)
{
struct cnss_ramdump_info_v2 *info_v2;
info_v2 = &plat_priv->ramdump_info_v2;
if (info_v2->ramdump_dev)
cnss_destroy_ramdump_device(plat_priv, info_v2->ramdump_dev);
kfree(info_v2->dump_data_vaddr);
info_v2->dump_data_vaddr = NULL;
info_v2->dump_data_valid = false;
}
int cnss_register_ramdump(struct cnss_plat_data *plat_priv)
{
int ret = 0;
switch (plat_priv->device_id) {
case QCA6174_DEVICE_ID:
ret = cnss_register_ramdump_v1(plat_priv);
break;
case QCA6290_DEVICE_ID:
case QCA6390_DEVICE_ID:
case QCA6490_DEVICE_ID:
case WCN7850_DEVICE_ID:
ret = cnss_register_ramdump_v2(plat_priv);
break;
default:
cnss_pr_err("Unknown device ID: 0x%lx\n", plat_priv->device_id);
ret = -ENODEV;
break;
}
return ret;
}
void cnss_unregister_ramdump(struct cnss_plat_data *plat_priv)
{
switch (plat_priv->device_id) {
case QCA6174_DEVICE_ID:
cnss_unregister_ramdump_v1(plat_priv);
break;
case QCA6290_DEVICE_ID:
case QCA6390_DEVICE_ID:
case QCA6490_DEVICE_ID:
case WCN7850_DEVICE_ID:
cnss_unregister_ramdump_v2(plat_priv);
break;
default:
cnss_pr_err("Unknown device ID: 0x%lx\n", plat_priv->device_id);
break;
}
}
#else
int cnss_register_ramdump(struct cnss_plat_data *plat_priv)
{
return 0;
}
void cnss_unregister_ramdump(struct cnss_plat_data *plat_priv) {}
#endif /* CONFIG_QCOM_MEMORY_DUMP_V2 */
#if IS_ENABLED(CONFIG_QCOM_MINIDUMP)
int cnss_minidump_add_region(struct cnss_plat_data *plat_priv,
enum cnss_fw_dump_type type, int seg_no,
void *va, phys_addr_t pa, size_t size)
{
struct md_region md_entry;
int ret;
switch (type) {
case CNSS_FW_IMAGE:
snprintf(md_entry.name, sizeof(md_entry.name), "FBC_%X",
seg_no);
break;
case CNSS_FW_RDDM:
snprintf(md_entry.name, sizeof(md_entry.name), "RDDM_%X",
seg_no);
break;
case CNSS_FW_REMOTE_HEAP:
snprintf(md_entry.name, sizeof(md_entry.name), "RHEAP_%X",
seg_no);
break;
default:
cnss_pr_err("Unknown dump type ID: %d\n", type);
return -EINVAL;
}
md_entry.phys_addr = pa;
md_entry.virt_addr = (uintptr_t)va;
md_entry.size = size;
md_entry.id = MSM_DUMP_DATA_CNSS_WLAN;
cnss_pr_dbg("Mini dump region: %s, va: %pK, pa: %pa, size: 0x%zx\n",
md_entry.name, va, &pa, size);
ret = msm_minidump_add_region(&md_entry);
if (ret < 0)
cnss_pr_err("Failed to add mini dump region, err = %d\n", ret);
return ret;
}
int cnss_minidump_remove_region(struct cnss_plat_data *plat_priv,
enum cnss_fw_dump_type type, int seg_no,
void *va, phys_addr_t pa, size_t size)
{
struct md_region md_entry;
int ret;
switch (type) {
case CNSS_FW_IMAGE:
snprintf(md_entry.name, sizeof(md_entry.name), "FBC_%X",
seg_no);
break;
case CNSS_FW_RDDM:
snprintf(md_entry.name, sizeof(md_entry.name), "RDDM_%X",
seg_no);
break;
case CNSS_FW_REMOTE_HEAP:
snprintf(md_entry.name, sizeof(md_entry.name), "RHEAP_%X",
seg_no);
break;
default:
cnss_pr_err("Unknown dump type ID: %d\n", type);
return -EINVAL;
}
md_entry.phys_addr = pa;
md_entry.virt_addr = (uintptr_t)va;
md_entry.size = size;
md_entry.id = MSM_DUMP_DATA_CNSS_WLAN;
cnss_pr_dbg("Remove mini dump region: %s, va: %pK, pa: %pa, size: 0x%zx\n",
md_entry.name, va, &pa, size);
ret = msm_minidump_remove_region(&md_entry);
if (ret)
cnss_pr_err("Failed to remove mini dump region, err = %d\n",
ret);
return ret;
}
#else
int cnss_minidump_add_region(struct cnss_plat_data *plat_priv,
enum cnss_fw_dump_type type, int seg_no,
void *va, phys_addr_t pa, size_t size)
{
return 0;
}
int cnss_minidump_remove_region(struct cnss_plat_data *plat_priv,
enum cnss_fw_dump_type type, int seg_no,
void *va, phys_addr_t pa, size_t size)
{
return 0;
}
#endif /* CONFIG_QCOM_MINIDUMP */
int cnss_request_firmware_direct(struct cnss_plat_data *plat_priv,
const struct firmware **fw_entry,
const char *filename)
{
if (IS_ENABLED(CONFIG_CNSS_REQ_FW_DIRECT))
return request_firmware_direct(fw_entry, filename,
&plat_priv->plat_dev->dev);
else
return firmware_request_nowarn(fw_entry, filename,
&plat_priv->plat_dev->dev);
}
#if IS_ENABLED(CONFIG_INTERCONNECT_QCOM)
/**
* cnss_register_bus_scale() - Setup interconnect voting data
* @plat_priv: Platform data structure
*
* For different interconnect path configured in device tree setup voting data
* for list of bandwidth requirements.
*
* Result: 0 for success. -EINVAL if not configured
*/
static int cnss_register_bus_scale(struct cnss_plat_data *plat_priv)
{
int ret = -EINVAL;
u32 idx, i, j, cfg_arr_size, *cfg_arr = NULL;
struct cnss_bus_bw_info *bus_bw_info, *tmp;
struct device *dev = &plat_priv->plat_dev->dev;
INIT_LIST_HEAD(&plat_priv->icc.list_head);
ret = of_property_read_u32(dev->of_node,
"qcom,icc-path-count",
&plat_priv->icc.path_count);
if (ret) {
cnss_pr_err("Platform Bus Interconnect path not configured\n");
return -EINVAL;
}
ret = of_property_read_u32(plat_priv->plat_dev->dev.of_node,
"qcom,bus-bw-cfg-count",
&plat_priv->icc.bus_bw_cfg_count);
if (ret) {
cnss_pr_err("Failed to get Bus BW Config table size\n");
goto cleanup;
}
cfg_arr_size = plat_priv->icc.path_count *
plat_priv->icc.bus_bw_cfg_count * CNSS_ICC_VOTE_MAX;
cfg_arr = kcalloc(cfg_arr_size, sizeof(*cfg_arr), GFP_KERNEL);
if (!cfg_arr) {
cnss_pr_err("Failed to alloc cfg table mem\n");
ret = -ENOMEM;
goto cleanup;
}
ret = of_property_read_u32_array(plat_priv->plat_dev->dev.of_node,
"qcom,bus-bw-cfg", cfg_arr,
cfg_arr_size);
if (ret) {
cnss_pr_err("Invalid Bus BW Config Table\n");
goto cleanup;
}
cnss_pr_dbg("ICC Path_Count: %d BW_CFG_Count: %d\n",
plat_priv->icc.path_count, plat_priv->icc.bus_bw_cfg_count);
for (idx = 0; idx < plat_priv->icc.path_count; idx++) {
bus_bw_info = devm_kzalloc(dev, sizeof(*bus_bw_info),
GFP_KERNEL);
if (!bus_bw_info) {
ret = -ENOMEM;
goto out;
}
ret = of_property_read_string_index(dev->of_node,
"interconnect-names", idx,
&bus_bw_info->icc_name);
if (ret)
goto out;
bus_bw_info->icc_path =
of_icc_get(&plat_priv->plat_dev->dev,
bus_bw_info->icc_name);
if (IS_ERR(bus_bw_info->icc_path)) {
ret = PTR_ERR(bus_bw_info->icc_path);
if (ret != -EPROBE_DEFER) {
cnss_pr_err("Failed to get Interconnect path for %s. Err: %d\n",
bus_bw_info->icc_name, ret);
goto out;
}
}
bus_bw_info->cfg_table =
devm_kcalloc(dev, plat_priv->icc.bus_bw_cfg_count,
sizeof(*bus_bw_info->cfg_table),
GFP_KERNEL);
if (!bus_bw_info->cfg_table) {
ret = -ENOMEM;
goto out;
}
cnss_pr_dbg("ICC Vote CFG for path: %s\n",
bus_bw_info->icc_name);
for (i = 0, j = (idx * plat_priv->icc.bus_bw_cfg_count *
CNSS_ICC_VOTE_MAX);
i < plat_priv->icc.bus_bw_cfg_count;
i++, j += 2) {
bus_bw_info->cfg_table[i].avg_bw = cfg_arr[j];
bus_bw_info->cfg_table[i].peak_bw = cfg_arr[j + 1];
cnss_pr_dbg("ICC Vote BW: %d avg: %d peak: %d\n",
i, bus_bw_info->cfg_table[i].avg_bw,
bus_bw_info->cfg_table[i].peak_bw);
}
list_add_tail(&bus_bw_info->list,
&plat_priv->icc.list_head);
}
kfree(cfg_arr);
return 0;
out:
list_for_each_entry_safe(bus_bw_info, tmp,
&plat_priv->icc.list_head, list) {
list_del(&bus_bw_info->list);
}
cleanup:
kfree(cfg_arr);
memset(&plat_priv->icc, 0, sizeof(plat_priv->icc));
return ret;
}
static void cnss_unregister_bus_scale(struct cnss_plat_data *plat_priv)
{
struct cnss_bus_bw_info *bus_bw_info, *tmp;
list_for_each_entry_safe(bus_bw_info, tmp,
&plat_priv->icc.list_head, list) {
list_del(&bus_bw_info->list);
if (bus_bw_info->icc_path)
icc_put(bus_bw_info->icc_path);
}
memset(&plat_priv->icc, 0, sizeof(plat_priv->icc));
}
#else
static int cnss_register_bus_scale(struct cnss_plat_data *plat_priv)
{
return 0;
}
static void cnss_unregister_bus_scale(struct cnss_plat_data *plat_priv) {}
#endif /* CONFIG_INTERCONNECT */
void cnss_daemon_connection_update_cb(void *cb_ctx, bool status)
{
struct cnss_plat_data *plat_priv = cb_ctx;
if (!plat_priv) {
cnss_pr_err("%s: Invalid context\n", __func__);
return;
}
if (status) {
cnss_pr_info("CNSS Daemon connected\n");
set_bit(CNSS_DAEMON_CONNECTED, &plat_priv->driver_state);
complete(&plat_priv->daemon_connected);
} else {
cnss_pr_info("CNSS Daemon disconnected\n");
reinit_completion(&plat_priv->daemon_connected);
clear_bit(CNSS_DAEMON_CONNECTED, &plat_priv->driver_state);
}
}
static ssize_t enable_hds_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct cnss_plat_data *plat_priv = dev_get_drvdata(dev);
unsigned int enable_hds = 0;
if (!plat_priv)
return -ENODEV;
if (sscanf(buf, "%du", &enable_hds) != 1) {
cnss_pr_err("Invalid enable_hds sysfs command\n");
return -EINVAL;
}
if (enable_hds)
plat_priv->hds_enabled = true;
else
plat_priv->hds_enabled = false;
cnss_pr_dbg("%s HDS file download, count is %zu\n",
plat_priv->hds_enabled ? "Enable" : "Disable", count);
return count;
}
static ssize_t recovery_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct cnss_plat_data *plat_priv = dev_get_drvdata(dev);
unsigned int recovery = 0;
if (!plat_priv)
return -ENODEV;
if (sscanf(buf, "%du", &recovery) != 1) {
cnss_pr_err("Invalid recovery sysfs command\n");
return -EINVAL;
}
if (recovery)
plat_priv->recovery_enabled = true;
else
plat_priv->recovery_enabled = false;
cnss_pr_dbg("%s WLAN recovery, count is %zu\n",
plat_priv->recovery_enabled ? "Enable" : "Disable", count);
return count;
}
static ssize_t shutdown_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct cnss_plat_data *plat_priv = dev_get_drvdata(dev);
if (plat_priv) {
set_bit(CNSS_IN_REBOOT, &plat_priv->driver_state);
del_timer(&plat_priv->fw_boot_timer);
complete_all(&plat_priv->power_up_complete);
complete_all(&plat_priv->cal_complete);
}
cnss_pr_dbg("Received shutdown notification\n");
return count;
}
static ssize_t fs_ready_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int fs_ready = 0;
struct cnss_plat_data *plat_priv = dev_get_drvdata(dev);
if (sscanf(buf, "%du", &fs_ready) != 1)
return -EINVAL;
cnss_pr_dbg("File system is ready, fs_ready is %d, count is %zu\n",
fs_ready, count);
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL\n");
return count;
}
if (test_bit(QMI_BYPASS, &plat_priv->ctrl_params.quirks)) {
cnss_pr_dbg("QMI is bypassed\n");
return count;
}
switch (plat_priv->device_id) {
case QCA6290_DEVICE_ID:
case QCA6390_DEVICE_ID:
case QCA6490_DEVICE_ID:
case WCN7850_DEVICE_ID:
break;
default:
cnss_pr_err("Not supported for device ID 0x%lx\n",
plat_priv->device_id);
return count;
}
if (fs_ready == FILE_SYSTEM_READY && plat_priv->cbc_enabled) {
cnss_driver_event_post(plat_priv,
CNSS_DRIVER_EVENT_COLD_BOOT_CAL_START,
0, NULL);
}
return count;
}
static ssize_t qdss_trace_start_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct cnss_plat_data *plat_priv = dev_get_drvdata(dev);
wlfw_qdss_trace_start(plat_priv);
cnss_pr_dbg("Received QDSS start command\n");
return count;
}
static ssize_t qdss_trace_stop_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct cnss_plat_data *plat_priv = dev_get_drvdata(dev);
u32 option = 0;
if (sscanf(buf, "%du", &option) != 1)
return -EINVAL;
wlfw_qdss_trace_stop(plat_priv, option);
cnss_pr_dbg("Received QDSS stop command\n");
return count;
}
static ssize_t qdss_conf_download_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct cnss_plat_data *plat_priv = dev_get_drvdata(dev);
cnss_wlfw_qdss_dnld_send_sync(plat_priv);
cnss_pr_dbg("Received QDSS download config command\n");
return count;
}
static ssize_t hw_trace_override_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct cnss_plat_data *plat_priv = dev_get_drvdata(dev);
int tmp = 0;
if (sscanf(buf, "%du", &tmp) != 1)
return -EINVAL;
plat_priv->hw_trc_override = tmp;
cnss_pr_dbg("Received QDSS hw_trc_override indication\n");
return count;
}
static ssize_t charger_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct cnss_plat_data *plat_priv = dev_get_drvdata(dev);
int tmp = 0;
if (sscanf(buf, "%du", &tmp) != 1)
return -EINVAL;
plat_priv->charger_mode = tmp;
cnss_pr_dbg("Received Charger Mode: %d\n", tmp);
return count;
}
static DEVICE_ATTR_WO(fs_ready);
static DEVICE_ATTR_WO(shutdown);
static DEVICE_ATTR_WO(recovery);
static DEVICE_ATTR_WO(enable_hds);
static DEVICE_ATTR_WO(qdss_trace_start);
static DEVICE_ATTR_WO(qdss_trace_stop);
static DEVICE_ATTR_WO(qdss_conf_download);
static DEVICE_ATTR_WO(hw_trace_override);
static DEVICE_ATTR_WO(charger_mode);
static struct attribute *cnss_attrs[] = {
&dev_attr_fs_ready.attr,
&dev_attr_shutdown.attr,
&dev_attr_recovery.attr,
&dev_attr_enable_hds.attr,
&dev_attr_qdss_trace_start.attr,
&dev_attr_qdss_trace_stop.attr,
&dev_attr_qdss_conf_download.attr,
&dev_attr_hw_trace_override.attr,
&dev_attr_charger_mode.attr,
NULL,
};
static struct attribute_group cnss_attr_group = {
.attrs = cnss_attrs,
};
static int cnss_create_sysfs_link(struct cnss_plat_data *plat_priv)
{
struct device *dev = &plat_priv->plat_dev->dev;
int ret;
ret = sysfs_create_link(kernel_kobj, &dev->kobj, "cnss");
if (ret) {
cnss_pr_err("Failed to create cnss link, err = %d\n",
ret);
goto out;
}
/* This is only for backward compatibility. */
ret = sysfs_create_link(kernel_kobj, &dev->kobj, "shutdown_wlan");
if (ret) {
cnss_pr_err("Failed to create shutdown_wlan link, err = %d\n",
ret);
goto rm_cnss_link;
}
return 0;
rm_cnss_link:
sysfs_remove_link(kernel_kobj, "cnss");
out:
return ret;
}
static void cnss_remove_sysfs_link(struct cnss_plat_data *plat_priv)
{
sysfs_remove_link(kernel_kobj, "shutdown_wlan");
sysfs_remove_link(kernel_kobj, "cnss");
}
#ifdef CONFIG_SEC_SS_CNSS_FEATURE_SYSFS
void cnss_sysfs_update_driver_status(int32_t new_status, void *version, void *softap)
{
if (new_status == DRIVER_MODULES_ENABLED) {
memcpy(ver_info, version, 512);
memcpy(softap_info, softap, 512);
}
current_driver_status = new_status;
}
EXPORT_SYMBOL(cnss_sysfs_update_driver_status);
#define MAC_ADDR_SIZE 6
uint8_t mac_from_macloader[MAC_ADDR_SIZE] = {0,0,0,0,0,0};
int pm_from_macloader = 0;
int ant_from_macloader = 0;
int memdump_from_macloader = 0;
extern int cnss_utils_set_wlan_mac_address(const u8 *mac_list, const uint32_t len);
static ssize_t store_mac_addr(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf,
size_t count)
{
if (!plat_env)
return count;
sscanf(buf, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx",
(const u8*)&mac_from_macloader[0],
(const u8*)&mac_from_macloader[1],
(const u8*)&mac_from_macloader[2],
(const u8*)&mac_from_macloader[3],
(const u8*)&mac_from_macloader[4],
(const u8*)&mac_from_macloader[5]);
cnss_pr_info("Assigning MAC from Macloader %02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx\n",
mac_from_macloader[0], mac_from_macloader[1],mac_from_macloader[2],
mac_from_macloader[3], mac_from_macloader[4],mac_from_macloader[5]);
cnss_utils_set_wlan_mac_address(mac_from_macloader, MAC_ADDR_SIZE);
complete(&plat_env->macloader_done);
return count;
}
static ssize_t show_verinfo(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return scnprintf(buf, 512, "%s", ver_info);
}
static ssize_t show_softapinfo(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return scnprintf(buf, 512, "%s", softap_info);
}
static ssize_t show_qcwlanstate(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
char status[20];
static const char wlan_off_str[] = "OFF";
static const char wlan_on_str[] = "ON";
switch (current_driver_status) {
case DRIVER_MODULES_UNINITIALIZED:
case DRIVER_MODULES_CLOSED:
cnss_pr_info("Modules not initialized just return");
memset(status, '\0', sizeof("OFF"));
memcpy(status, wlan_off_str, sizeof("OFF"));
break;
case DRIVER_MODULES_ENABLED:
cnss_pr_info("Modules enabled");
memset(status, '\0', sizeof("ON"));
memcpy(status, wlan_on_str, sizeof("ON"));
break;
}
return scnprintf(buf, PAGE_SIZE, "%s", status);
}
static ssize_t store_pm_info(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf,
size_t count)
{
cnss_pr_info("%s enter\n", __func__);
sscanf(buf, "%d", &pm_from_macloader);
pm_from_macloader = !pm_from_macloader;
cnss_pr_info("pm_from_macloader %d\n", pm_from_macloader);
return count;
}
int cnss_sysfs_get_pm_info(void)
{
return pm_from_macloader;
}
EXPORT_SYMBOL(cnss_sysfs_get_pm_info);
static ssize_t store_ant_info(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf,
size_t count)
{
cnss_pr_info("%s enter\n", __func__);
sscanf(buf, "%d", &ant_from_macloader);
cnss_pr_info("ant_from_macloader %d\n", ant_from_macloader);
return count;
}
static ssize_t store_memdump_info(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf,
size_t count)
{
cnss_pr_info("%s called\n", __func__);
sscanf(buf, "%d", &memdump_from_macloader);
cnss_pr_info("memdump_from_macloader %d\n", memdump_from_macloader);
return count;
}
static ssize_t show_memdump_info(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return scnprintf(buf, 512, "%d", memdump_from_macloader);
}
static ssize_t show_dump_in_progress(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return scnprintf(buf, 512, "%d", dump_in_progress);
}
static ssize_t store_dump_in_progress(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf,
size_t count)
{
cnss_pr_info("%s enter\n", __func__);
sscanf(buf, "%d", &dump_in_progress);
cnss_pr_info("dump_in_progress %d\n", dump_in_progress);
return count;
}
static struct kobj_attribute sec_mac_addr_attribute =
__ATTR(mac_addr, 0220, NULL, store_mac_addr);
static struct kobj_attribute sec_verinfo_sysfs_attribute =
__ATTR(wifiver, 0440, show_verinfo, NULL);
static struct kobj_attribute sec_softapinfo_sysfs_attribute =
__ATTR(softap, 0440, show_softapinfo, NULL);
static struct kobj_attribute qcwlanstate_attribute =
__ATTR(qcwlanstate, 0440, show_qcwlanstate, NULL);
static struct kobj_attribute sec_pminfo_sysfs_attribute =
__ATTR(pm, 0220, NULL, store_pm_info);
static struct kobj_attribute sec_antinfo_sysfs_attribute =
__ATTR(ant, 0220, NULL, store_ant_info);
static struct kobj_attribute sec_memdumpinfo_sysfs_attribute =
__ATTR(memdump, 0660, show_memdump_info, store_memdump_info);
static struct kobj_attribute sec_dump_in_progress_attribute =
__ATTR(dump_in_progress, 0660, show_dump_in_progress,
store_dump_in_progress);
static struct attribute *sec_sysfs_attrs[] = {
&sec_mac_addr_attribute.attr,
&sec_verinfo_sysfs_attribute.attr,
&sec_softapinfo_sysfs_attribute.attr,
&qcwlanstate_attribute.attr,
&sec_pminfo_sysfs_attribute.attr,
&sec_antinfo_sysfs_attribute.attr,
&sec_memdumpinfo_sysfs_attribute.attr,
&sec_dump_in_progress_attribute.attr,
NULL
};
static struct attribute_group sec_sysfs_attr_group = {
.attrs = sec_sysfs_attrs,
};
static int sec_create_wifi_sysfs(struct cnss_plat_data *plat_priv)
{
int ret = 0;
plat_priv->wifi_kobj = kobject_create_and_add("wifi", NULL);
if (!plat_priv->wifi_kobj) {
cnss_pr_err("Failed to create shutdown_wlan kernel object\n");
return -ENOMEM;
}
ret = sysfs_create_group(plat_priv->wifi_kobj, &sec_sysfs_attr_group);
if (ret) {
cnss_pr_err("could not create group %d", ret);
kobject_put(plat_priv->wifi_kobj);
plat_priv->wifi_kobj = NULL;
}
cnss_pr_info("%s done\n", __func__);
return ret;
}
static void sec_remove_wifi_sysfs(struct cnss_plat_data *plat_priv)
{
if (plat_priv->wifi_kobj) {
sysfs_remove_group(plat_priv->wifi_kobj,
&sec_sysfs_attr_group);
kobject_put(plat_priv->wifi_kobj);
plat_priv->wifi_kobj = NULL;
}
}
#endif /* CONFIG_SEC_SS_CNSS_FEATURE_SYSFS */
static int cnss_create_sysfs(struct cnss_plat_data *plat_priv)
{
int ret = 0;
ret = devm_device_add_group(&plat_priv->plat_dev->dev,
&cnss_attr_group);
if (ret) {
cnss_pr_err("Failed to create cnss device group, err = %d\n",
ret);
goto out;
}
cnss_create_sysfs_link(plat_priv);
#ifdef CONFIG_SEC_SS_CNSS_FEATURE_SYSFS
sec_create_wifi_sysfs(plat_priv);
init_completion(&plat_priv->macloader_done);
#endif /* CONFIG_SEC_SS_CNSS_FEATURE_SYSFS */
return 0;
out:
return ret;
}
static void cnss_remove_sysfs(struct cnss_plat_data *plat_priv)
{
cnss_remove_sysfs_link(plat_priv);
#ifdef CONFIG_SEC_SS_CNSS_FEATURE_SYSFS
sec_remove_wifi_sysfs(plat_priv);
complete_all(&plat_priv->macloader_done);
#endif /* CONFIG_SEC_SS_CNSS_FEATURE_SYSFS */
devm_device_remove_group(&plat_priv->plat_dev->dev, &cnss_attr_group);
}
static int cnss_event_work_init(struct cnss_plat_data *plat_priv)
{
spin_lock_init(&plat_priv->event_lock);
plat_priv->event_wq = alloc_workqueue("cnss_driver_event",
WQ_UNBOUND, 1);
if (!plat_priv->event_wq) {
cnss_pr_err("Failed to create event workqueue!\n");
return -EFAULT;
}
INIT_WORK(&plat_priv->event_work, cnss_driver_event_work);
INIT_LIST_HEAD(&plat_priv->event_list);
return 0;
}
static void cnss_event_work_deinit(struct cnss_plat_data *plat_priv)
{
destroy_workqueue(plat_priv->event_wq);
}
static int cnss_reboot_notifier(struct notifier_block *nb,
unsigned long action,
void *data)
{
struct cnss_plat_data *plat_priv =
container_of(nb, struct cnss_plat_data, reboot_nb);
set_bit(CNSS_IN_REBOOT, &plat_priv->driver_state);
del_timer(&plat_priv->fw_boot_timer);
complete_all(&plat_priv->power_up_complete);
complete_all(&plat_priv->cal_complete);
cnss_pr_dbg("Reboot is in progress with action %d\n", action);
return NOTIFY_DONE;
}
static int cnss_misc_init(struct cnss_plat_data *plat_priv)
{
int ret;
timer_setup(&plat_priv->fw_boot_timer,
cnss_bus_fw_boot_timeout_hdlr, 0);
ret = register_pm_notifier(&cnss_pm_notifier);
if (ret)
cnss_pr_err("Failed to register PM notifier, err = %d\n", ret);
plat_priv->reboot_nb.notifier_call = cnss_reboot_notifier;
ret = register_reboot_notifier(&plat_priv->reboot_nb);
if (ret)
cnss_pr_err("Failed to register reboot notifier, err = %d\n",
ret);
ret = device_init_wakeup(&plat_priv->plat_dev->dev, true);
if (ret)
cnss_pr_err("Failed to init platform device wakeup source, err = %d\n",
ret);
INIT_WORK(&plat_priv->recovery_work, cnss_recovery_work_handler);
init_completion(&plat_priv->power_up_complete);
init_completion(&plat_priv->cal_complete);
init_completion(&plat_priv->rddm_complete);
init_completion(&plat_priv->recovery_complete);
init_completion(&plat_priv->daemon_connected);
init_completion(&plat_priv->dump_complete);
mutex_init(&plat_priv->dev_lock);
mutex_init(&plat_priv->driver_ops_lock);
mutex_init(&plat_priv->force_assert_lock);
plat_priv->recovery_ws =
wakeup_source_register(&plat_priv->plat_dev->dev,
"CNSS_FW_RECOVERY");
if (!plat_priv->recovery_ws)
cnss_pr_err("Failed to setup FW recovery wake source\n");
ret = cnss_plat_ipc_register(CNSS_PLAT_IPC_DAEMON_QMI_CLIENT_V01,
cnss_daemon_connection_update_cb,
plat_priv);
if (ret)
cnss_pr_err("QMI IPC connection call back register failed, err = %d\n",
ret);
return 0;
}
static void cnss_misc_deinit(struct cnss_plat_data *plat_priv)
{
cnss_plat_ipc_unregister(CNSS_PLAT_IPC_DAEMON_QMI_CLIENT_V01,
plat_priv);
complete_all(&plat_priv->dump_complete);
complete_all(&plat_priv->recovery_complete);
complete_all(&plat_priv->rddm_complete);
complete_all(&plat_priv->cal_complete);
complete_all(&plat_priv->power_up_complete);
complete_all(&plat_priv->daemon_connected);
device_init_wakeup(&plat_priv->plat_dev->dev, false);
unregister_reboot_notifier(&plat_priv->reboot_nb);
unregister_pm_notifier(&cnss_pm_notifier);
del_timer(&plat_priv->fw_boot_timer);
wakeup_source_unregister(plat_priv->recovery_ws);
}
static void cnss_init_control_params(struct cnss_plat_data *plat_priv)
{
plat_priv->ctrl_params.quirks = CNSS_QUIRKS_DEFAULT;
plat_priv->cbc_enabled = !IS_ENABLED(CONFIG_CNSS_EMULATION) &&
of_property_read_bool(plat_priv->plat_dev->dev.of_node,
"qcom,wlan-cbc-enabled");
plat_priv->ctrl_params.mhi_timeout = CNSS_MHI_TIMEOUT_DEFAULT;
plat_priv->ctrl_params.mhi_m2_timeout = CNSS_MHI_M2_TIMEOUT_DEFAULT;
plat_priv->ctrl_params.qmi_timeout = CNSS_QMI_TIMEOUT_DEFAULT;
plat_priv->ctrl_params.bdf_type = CNSS_BDF_TYPE_DEFAULT;
plat_priv->ctrl_params.time_sync_period = CNSS_TIME_SYNC_PERIOD_DEFAULT;
/* Set adsp_pc_enabled default value to true as ADSP pc is always
* enabled by default
*/
plat_priv->adsp_pc_enabled = true;
}
static void cnss_get_pm_domain_info(struct cnss_plat_data *plat_priv)
{
struct device *dev = &plat_priv->plat_dev->dev;
plat_priv->use_pm_domain =
of_property_read_bool(dev->of_node, "use-pm-domain");
cnss_pr_dbg("use-pm-domain is %d\n", plat_priv->use_pm_domain);
}
static void cnss_get_wlaon_pwr_ctrl_info(struct cnss_plat_data *plat_priv)
{
struct device *dev = &plat_priv->plat_dev->dev;
plat_priv->set_wlaon_pwr_ctrl =
of_property_read_bool(dev->of_node, "qcom,set-wlaon-pwr-ctrl");
cnss_pr_dbg("set_wlaon_pwr_ctrl is %d\n",
plat_priv->set_wlaon_pwr_ctrl);
}
static bool cnss_use_fw_path_with_prefix(struct cnss_plat_data *plat_priv)
{
return (of_property_read_bool(plat_priv->plat_dev->dev.of_node,
"qcom,converged-dt") ||
of_property_read_bool(plat_priv->plat_dev->dev.of_node,
"qcom,same-dt-multi-dev"));
}
static const struct platform_device_id cnss_platform_id_table[] = {
{ .name = "qca6174", .driver_data = QCA6174_DEVICE_ID, },
{ .name = "qca6290", .driver_data = QCA6290_DEVICE_ID, },
{ .name = "qca6390", .driver_data = QCA6390_DEVICE_ID, },
{ .name = "qca6490", .driver_data = QCA6490_DEVICE_ID, },
{ .name = "wcn7850", .driver_data = WCN7850_DEVICE_ID, },
{ },
};
static const struct of_device_id cnss_of_match_table[] = {
{
.compatible = "qcom,cnss",
.data = (void *)&cnss_platform_id_table[0]},
{
.compatible = "qcom,cnss-qca6290",
.data = (void *)&cnss_platform_id_table[1]},
{
.compatible = "qcom,cnss-qca6390",
.data = (void *)&cnss_platform_id_table[2]},
{
.compatible = "qcom,cnss-qca6490",
.data = (void *)&cnss_platform_id_table[3]},
{
.compatible = "qcom,cnss-wcn7850",
.data = (void *)&cnss_platform_id_table[4]},
{ },
};
MODULE_DEVICE_TABLE(of, cnss_of_match_table);
static inline bool
cnss_use_nv_mac(struct cnss_plat_data *plat_priv)
{
return of_property_read_bool(plat_priv->plat_dev->dev.of_node,
"use-nv-mac");
}
static int cnss_probe(struct platform_device *plat_dev)
{
int ret = 0;
struct cnss_plat_data *plat_priv;
const struct of_device_id *of_id;
const struct platform_device_id *device_id;
int retry = 0;
if (cnss_get_plat_priv(plat_dev)) {
cnss_pr_err("Driver is already initialized!\n");
ret = -EEXIST;
goto out;
}
of_id = of_match_device(cnss_of_match_table, &plat_dev->dev);
if (!of_id || !of_id->data) {
cnss_pr_err("Failed to find of match device!\n");
ret = -ENODEV;
goto out;
}
device_id = of_id->data;
plat_priv = devm_kzalloc(&plat_dev->dev, sizeof(*plat_priv),
GFP_KERNEL);
if (!plat_priv) {
ret = -ENOMEM;
goto out;
}
plat_priv->plat_dev = plat_dev;
plat_priv->device_id = device_id->driver_data;
plat_priv->bus_type = cnss_get_bus_type(plat_priv->device_id);
plat_priv->use_nv_mac = cnss_use_nv_mac(plat_priv);
plat_priv->use_fw_path_with_prefix =
cnss_use_fw_path_with_prefix(plat_priv);
cnss_set_plat_priv(plat_dev, plat_priv);
platform_set_drvdata(plat_dev, plat_priv);
INIT_LIST_HEAD(&plat_priv->vreg_list);
INIT_LIST_HEAD(&plat_priv->clk_list);
cnss_get_pm_domain_info(plat_priv);
cnss_get_wlaon_pwr_ctrl_info(plat_priv);
cnss_get_tcs_info(plat_priv);
cnss_get_cpr_info(plat_priv);
cnss_aop_mbox_init(plat_priv);
cnss_init_control_params(plat_priv);
ret = cnss_get_resources(plat_priv);
if (ret)
goto reset_ctx;
ret = cnss_register_esoc(plat_priv);
if (ret)
goto free_res;
ret = cnss_register_bus_scale(plat_priv);
if (ret)
goto unreg_esoc;
ret = cnss_create_sysfs(plat_priv);
if (ret)
goto unreg_bus_scale;
ret = cnss_event_work_init(plat_priv);
if (ret)
goto remove_sysfs;
ret = cnss_qmi_init(plat_priv);
if (ret)
goto deinit_event_work;
ret = cnss_dms_init(plat_priv);
if (ret)
goto deinit_qmi;
ret = cnss_debugfs_create(plat_priv);
if (ret)
goto deinit_dms;
ret = cnss_misc_init(plat_priv);
if (ret)
goto destroy_debugfs;
/* Make sure all platform related init are done before
* device power on and bus init.
*/
if (!test_bit(SKIP_DEVICE_BOOT, &plat_priv->ctrl_params.quirks)) {
retry:
ret = cnss_power_on_device(plat_priv);
if (ret)
goto deinit_misc;
ret = cnss_bus_init(plat_priv);
if (ret) {
if ((ret != -EPROBE_DEFER) &&
retry++ < POWER_ON_RETRY_MAX_TIMES) {
cnss_power_off_device(plat_priv);
cnss_pr_dbg("Retry cnss_bus_init #%d\n", retry);
msleep(POWER_ON_RETRY_DELAY_MS * retry);
goto retry;
}
goto power_off;
}
}
cnss_register_coex_service(plat_priv);
cnss_register_ims_service(plat_priv);
ret = cnss_genl_init();
if (ret < 0)
cnss_pr_err("CNSS genl init failed %d\n", ret);
#ifdef CONFIG_SOC_S5E9925
cnss_init_sw_ctrl_gpio(plat_priv);
#endif
cnss_pr_info("Platform driver probed successfully.\n");
return 0;
power_off:
if (!test_bit(SKIP_DEVICE_BOOT, &plat_priv->ctrl_params.quirks))
cnss_power_off_device(plat_priv);
deinit_misc:
cnss_misc_deinit(plat_priv);
destroy_debugfs:
cnss_debugfs_destroy(plat_priv);
deinit_dms:
cnss_dms_deinit(plat_priv);
deinit_qmi:
cnss_qmi_deinit(plat_priv);
deinit_event_work:
cnss_event_work_deinit(plat_priv);
remove_sysfs:
cnss_remove_sysfs(plat_priv);
unreg_bus_scale:
cnss_unregister_bus_scale(plat_priv);
unreg_esoc:
cnss_unregister_esoc(plat_priv);
free_res:
cnss_put_resources(plat_priv);
reset_ctx:
platform_set_drvdata(plat_dev, NULL);
cnss_set_plat_priv(plat_dev, NULL);
out:
return ret;
}
static int cnss_remove(struct platform_device *plat_dev)
{
struct cnss_plat_data *plat_priv = platform_get_drvdata(plat_dev);
cnss_genl_exit();
cnss_unregister_ims_service(plat_priv);
cnss_unregister_coex_service(plat_priv);
cnss_bus_deinit(plat_priv);
cnss_misc_deinit(plat_priv);
cnss_debugfs_destroy(plat_priv);
cnss_dms_deinit(plat_priv);
cnss_qmi_deinit(plat_priv);
cnss_event_work_deinit(plat_priv);
cnss_remove_sysfs(plat_priv);
cnss_unregister_bus_scale(plat_priv);
cnss_unregister_esoc(plat_priv);
cnss_put_resources(plat_priv);
if (!IS_ERR_OR_NULL(plat_priv->mbox_chan))
mbox_free_channel(plat_priv->mbox_chan);
platform_set_drvdata(plat_dev, NULL);
plat_env = NULL;
return 0;
}
static void cnss_shutdown(struct platform_device *plat_dev)
{
struct cnss_plat_data *plat_priv = platform_get_drvdata(plat_dev);
cnss_pr_dbg("cnss shutdown\n");
set_bit(CNSS_DRIVER_UNLOADING, &plat_priv->driver_state);
cnss_bus_dev_shutdown(plat_priv);
}
static struct platform_driver cnss_platform_driver = {
.probe = cnss_probe,
.remove = cnss_remove,
.shutdown = cnss_shutdown,
.driver = {
.name = "cnss2",
.of_match_table = cnss_of_match_table,
#ifdef CONFIG_CNSS_ASYNC
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
#endif
},
};
/**
* cnss_is_valid_dt_node_found - Check if valid device tree node present
*
* Valid device tree node means a node with "compatible" property from the
* device match table and "status" property is not disabled.
*
* Return: true if valid device tree node found, false if not found
*/
static bool cnss_is_valid_dt_node_found(void)
{
struct device_node *dn = NULL;
for_each_matching_node(dn, cnss_of_match_table) {
if (of_device_is_available(dn))
break;
}
if (dn)
return true;
return false;
}
static int __init cnss_initialize(void)
{
int ret = 0;
if (!cnss_is_valid_dt_node_found())
return -ENODEV;
cnss_debug_init();
ret = platform_driver_register(&cnss_platform_driver);
if (ret)
cnss_debug_deinit();
return ret;
}
static void __exit cnss_exit(void)
{
platform_driver_unregister(&cnss_platform_driver);
cnss_debug_deinit();
}
module_init(cnss_initialize);
module_exit(cnss_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CNSS2 Platform Driver");