198 lines
7 KiB
C
Executable file
198 lines
7 KiB
C
Executable file
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012-2015 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*/
|
|
|
|
#ifndef __ARM64_KVM_HYP_SYSREG_SR_H__
|
|
#define __ARM64_KVM_HYP_SYSREG_SR_H__
|
|
|
|
#include <linux/compiler.h>
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include <asm/kprobes.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_hyp.h>
|
|
|
|
static inline void __sysreg_save_common_state(struct kvm_cpu_context *ctxt)
|
|
{
|
|
ctxt_sys_reg(ctxt, MDSCR_EL1) = read_sysreg(mdscr_el1);
|
|
}
|
|
|
|
static inline void __sysreg_save_user_state(struct kvm_cpu_context *ctxt)
|
|
{
|
|
ctxt_sys_reg(ctxt, TPIDR_EL0) = read_sysreg(tpidr_el0);
|
|
ctxt_sys_reg(ctxt, TPIDRRO_EL0) = read_sysreg(tpidrro_el0);
|
|
}
|
|
|
|
static inline void __sysreg_save_el1_state(struct kvm_cpu_context *ctxt)
|
|
{
|
|
ctxt_sys_reg(ctxt, CSSELR_EL1) = read_sysreg(csselr_el1);
|
|
ctxt_sys_reg(ctxt, SCTLR_EL1) = read_sysreg_el1(SYS_SCTLR);
|
|
ctxt_sys_reg(ctxt, CPACR_EL1) = read_sysreg_el1(SYS_CPACR);
|
|
ctxt_sys_reg(ctxt, TTBR0_EL1) = read_sysreg_el1(SYS_TTBR0);
|
|
ctxt_sys_reg(ctxt, TTBR1_EL1) = read_sysreg_el1(SYS_TTBR1);
|
|
ctxt_sys_reg(ctxt, TCR_EL1) = read_sysreg_el1(SYS_TCR);
|
|
ctxt_sys_reg(ctxt, ESR_EL1) = read_sysreg_el1(SYS_ESR);
|
|
ctxt_sys_reg(ctxt, AFSR0_EL1) = read_sysreg_el1(SYS_AFSR0);
|
|
ctxt_sys_reg(ctxt, AFSR1_EL1) = read_sysreg_el1(SYS_AFSR1);
|
|
ctxt_sys_reg(ctxt, FAR_EL1) = read_sysreg_el1(SYS_FAR);
|
|
ctxt_sys_reg(ctxt, MAIR_EL1) = read_sysreg_el1(SYS_MAIR);
|
|
ctxt_sys_reg(ctxt, VBAR_EL1) = read_sysreg_el1(SYS_VBAR);
|
|
ctxt_sys_reg(ctxt, CONTEXTIDR_EL1) = read_sysreg_el1(SYS_CONTEXTIDR);
|
|
ctxt_sys_reg(ctxt, AMAIR_EL1) = read_sysreg_el1(SYS_AMAIR);
|
|
ctxt_sys_reg(ctxt, CNTKCTL_EL1) = read_sysreg_el1(SYS_CNTKCTL);
|
|
ctxt_sys_reg(ctxt, PAR_EL1) = read_sysreg_par();
|
|
ctxt_sys_reg(ctxt, TPIDR_EL1) = read_sysreg(tpidr_el1);
|
|
|
|
ctxt_sys_reg(ctxt, SP_EL1) = read_sysreg(sp_el1);
|
|
ctxt_sys_reg(ctxt, ELR_EL1) = read_sysreg_el1(SYS_ELR);
|
|
ctxt_sys_reg(ctxt, SPSR_EL1) = read_sysreg_el1(SYS_SPSR);
|
|
}
|
|
|
|
static inline void __sysreg_save_el2_return_state(struct kvm_cpu_context *ctxt)
|
|
{
|
|
ctxt->regs.pc = read_sysreg_el2(SYS_ELR);
|
|
/*
|
|
* Guest PSTATE gets saved at guest fixup time in all
|
|
* cases. We still need to handle the nVHE host side here.
|
|
*/
|
|
if (!has_vhe() && ctxt->__hyp_running_vcpu)
|
|
ctxt->regs.pstate = read_sysreg_el2(SYS_SPSR);
|
|
|
|
if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
|
|
ctxt_sys_reg(ctxt, DISR_EL1) = read_sysreg_s(SYS_VDISR_EL2);
|
|
}
|
|
|
|
static inline void __sysreg_restore_common_state(struct kvm_cpu_context *ctxt)
|
|
{
|
|
write_sysreg(ctxt_sys_reg(ctxt, MDSCR_EL1), mdscr_el1);
|
|
}
|
|
|
|
static inline void __sysreg_restore_user_state(struct kvm_cpu_context *ctxt)
|
|
{
|
|
write_sysreg(ctxt_sys_reg(ctxt, TPIDR_EL0), tpidr_el0);
|
|
write_sysreg(ctxt_sys_reg(ctxt, TPIDRRO_EL0), tpidrro_el0);
|
|
}
|
|
|
|
static inline void __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt)
|
|
{
|
|
write_sysreg(ctxt_sys_reg(ctxt, MPIDR_EL1), vmpidr_el2);
|
|
write_sysreg(ctxt_sys_reg(ctxt, CSSELR_EL1), csselr_el1);
|
|
|
|
if (has_vhe() ||
|
|
!cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR);
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR);
|
|
} else if (!ctxt->__hyp_running_vcpu) {
|
|
/*
|
|
* Must only be done for guest registers, hence the context
|
|
* test. We're coming from the host, so SCTLR.M is already
|
|
* set. Pairs with nVHE's __activate_traps().
|
|
*/
|
|
write_sysreg_el1((ctxt_sys_reg(ctxt, TCR_EL1) |
|
|
TCR_EPD1_MASK | TCR_EPD0_MASK),
|
|
SYS_TCR);
|
|
isb();
|
|
}
|
|
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, CPACR_EL1), SYS_CPACR);
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL1), SYS_TTBR0);
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR1_EL1), SYS_TTBR1);
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, ESR_EL1), SYS_ESR);
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, AFSR0_EL1), SYS_AFSR0);
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, AFSR1_EL1), SYS_AFSR1);
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, FAR_EL1), SYS_FAR);
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, MAIR_EL1), SYS_MAIR);
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, VBAR_EL1), SYS_VBAR);
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, CONTEXTIDR_EL1), SYS_CONTEXTIDR);
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, AMAIR_EL1), SYS_AMAIR);
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, CNTKCTL_EL1), SYS_CNTKCTL);
|
|
write_sysreg(ctxt_sys_reg(ctxt, PAR_EL1), par_el1);
|
|
write_sysreg(ctxt_sys_reg(ctxt, TPIDR_EL1), tpidr_el1);
|
|
|
|
if (!has_vhe() &&
|
|
cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT) &&
|
|
ctxt->__hyp_running_vcpu) {
|
|
/*
|
|
* Must only be done for host registers, hence the context
|
|
* test. Pairs with nVHE's __deactivate_traps().
|
|
*/
|
|
isb();
|
|
/*
|
|
* At this stage, and thanks to the above isb(), S2 is
|
|
* deconfigured and disabled. We can now restore the host's
|
|
* S1 configuration: SCTLR, and only then TCR.
|
|
*/
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR);
|
|
isb();
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR);
|
|
}
|
|
|
|
write_sysreg(ctxt_sys_reg(ctxt, SP_EL1), sp_el1);
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, ELR_EL1), SYS_ELR);
|
|
write_sysreg_el1(ctxt_sys_reg(ctxt, SPSR_EL1), SYS_SPSR);
|
|
}
|
|
|
|
static inline void __sysreg_restore_el2_return_state(struct kvm_cpu_context *ctxt)
|
|
{
|
|
u64 pstate = ctxt->regs.pstate;
|
|
u64 mode = pstate & PSR_AA32_MODE_MASK;
|
|
|
|
/*
|
|
* Safety check to ensure we're setting the CPU up to enter the guest
|
|
* in a less privileged mode.
|
|
*
|
|
* If we are attempting a return to EL2 or higher in AArch64 state,
|
|
* program SPSR_EL2 with M=EL2h and the IL bit set which ensures that
|
|
* we'll take an illegal exception state exception immediately after
|
|
* the ERET to the guest. Attempts to return to AArch32 Hyp will
|
|
* result in an illegal exception return because EL2's execution state
|
|
* is determined by SCR_EL3.RW.
|
|
*/
|
|
if (!(mode & PSR_MODE32_BIT) && mode >= PSR_MODE_EL2t)
|
|
pstate = PSR_MODE_EL2h | PSR_IL_BIT;
|
|
|
|
write_sysreg_el2(ctxt->regs.pc, SYS_ELR);
|
|
write_sysreg_el2(pstate, SYS_SPSR);
|
|
|
|
if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
|
|
write_sysreg_s(ctxt_sys_reg(ctxt, DISR_EL1), SYS_VDISR_EL2);
|
|
}
|
|
|
|
static inline void __sysreg32_save_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu_el1_is_32bit(vcpu))
|
|
return;
|
|
|
|
vcpu->arch.ctxt.spsr_abt = read_sysreg(spsr_abt);
|
|
vcpu->arch.ctxt.spsr_und = read_sysreg(spsr_und);
|
|
vcpu->arch.ctxt.spsr_irq = read_sysreg(spsr_irq);
|
|
vcpu->arch.ctxt.spsr_fiq = read_sysreg(spsr_fiq);
|
|
|
|
__vcpu_sys_reg(vcpu, DACR32_EL2) = read_sysreg(dacr32_el2);
|
|
__vcpu_sys_reg(vcpu, IFSR32_EL2) = read_sysreg(ifsr32_el2);
|
|
|
|
if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
|
|
__vcpu_sys_reg(vcpu, DBGVCR32_EL2) = read_sysreg(dbgvcr32_el2);
|
|
}
|
|
|
|
static inline void __sysreg32_restore_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu_el1_is_32bit(vcpu))
|
|
return;
|
|
|
|
write_sysreg(vcpu->arch.ctxt.spsr_abt, spsr_abt);
|
|
write_sysreg(vcpu->arch.ctxt.spsr_und, spsr_und);
|
|
write_sysreg(vcpu->arch.ctxt.spsr_irq, spsr_irq);
|
|
write_sysreg(vcpu->arch.ctxt.spsr_fiq, spsr_fiq);
|
|
|
|
write_sysreg(__vcpu_sys_reg(vcpu, DACR32_EL2), dacr32_el2);
|
|
write_sysreg(__vcpu_sys_reg(vcpu, IFSR32_EL2), ifsr32_el2);
|
|
|
|
if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
|
|
write_sysreg(__vcpu_sys_reg(vcpu, DBGVCR32_EL2), dbgvcr32_el2);
|
|
}
|
|
|
|
#endif /* __ARM64_KVM_HYP_SYSREG_SR_H__ */
|