kernel_samsung_a53x/drivers/tty/serial/exynos_tty.c
2024-06-15 16:02:09 -03:00

3550 lines
94 KiB
C
Executable file

/*
* Driver core for Samsung SoC onboard UARTs.
*
* Ben Dooks, Copyright (c) 2003-2008 Simtec Electronics
* http://armlinux.simtec.co.uk/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/* Hote on 2410 error handling
*
* The s3c2410 manual has a love/hate affair with the contents of the
* UERSTAT register in the UART blocks, and keeps marking some of the
* error bits as reserved. Having checked with the s3c2410x01,
* it copes with BREAKs properly, so I am happy to ignore the RESERVED
* feature from the latter versions of the manual.
*
* If it becomes aparrent that latter versions of the 2410 remove these
* bits, then action will have to be taken to differentiate the versions
* and change the policy on BREAK
*
* BJD, 04-Nov-2004
*/
#if defined(CONFIG_MAGIC_SYSRQ)
#define SUPPORT_SYSRQ
#endif
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/sysrq.h>
#include <linux/console.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial_core.h>
#include <linux/serial.h>
#include <linux/serial_s3c.h>
#include <linux/notifier.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/suspend.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/reboot.h>
#include <asm/irq.h>
#include "exynos_tty.h"
#include "../../pinctrl/core.h"
#include <linux/pinctrl/consumer.h>
#ifdef CONFIG_PM_DEVFREQ
#include <linux/pm_qos.h>
#endif
#if IS_ENABLED(CONFIG_EXYNOS_CPUPM)
#include <soc/samsung/exynos-cpupm.h>
#endif
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
/* UART name and device definitions */
#define EXYNOS_SERIAL_NAME "ttySAC"
#define EXYNOS_SERIAL_MAJOR 204
#define EXYNOS_SERIAL_MINOR 64
#define EXYNOS_TX_PIO 1
#define EXYNOS_TX_DMA 2
#define EXYNOS_RX_PIO 1
#define EXYNOS_RX_DMA 2
/* Baudrate definition*/
#define MAX_BAUD 4000000
#define MIN_BAUD 0
#define DEFAULT_SOURCE_CLK 200000000
#if defined(CONFIG_SEC_FACTORY) // SEC_FACTORY
#define SERIAL_UART_TRACE 1
#define PROC_SERIAL_DIR "serial/uart"
#define SERIAL_UART_PORT_LINE 0
#endif
#define BT_UART_TRACE 1
#define PROC_DIR "bluetooth/uart"
#define BLUETOOTH_UART_PORT_LINE 1
/* flag to ignore all characters coming in */
#define RXSTAT_DUMMY_READ (0x10000000)
static LIST_HEAD(drvdata_list);
s3c_wake_peer_t s3c2410_serial_wake_peer[CONFIG_SERIAL_SAMSUNG_UARTS];
EXPORT_SYMBOL_GPL(s3c2410_serial_wake_peer);
#define UART_LOOPBACK_MODE (0x1 << 0)
#define UART_DBG_MODE (0x1 << 1)
#define RTS_PINCTRL (1)
#define DEFAULT_PINCTRL (0)
unsigned char uart_log_buf[256] = {0, };
/* Allocate 800KB of buffer for UART logging */
#define LOG_BUFFER_SIZE (0x190000)
#define LOG_REG_DEBUG_LEN (91)
#define USI_SW_CONF_MASK (0x7 << 0)
#define USI_UART_SW_CONF (1<<0)
struct exynos_uart_port *panic_port;
static u32 rd_reg(struct uart_port *port, u32 reg)
{
switch (port->iotype) {
case UPIO_MEM:
return readb_relaxed(portaddr(port, reg));
case UPIO_MEM32:
return readl_relaxed(portaddr(port, reg));
default:
return 0;
}
return 0;
}
#define rd_regl(port, reg) (readl_relaxed(portaddr(port, reg)))
static void wr_reg(struct uart_port *port, u32 reg, u32 val)
{
switch (port->iotype) {
case UPIO_MEM:
writeb_relaxed(val, portaddr(port, reg));
break;
case UPIO_MEM32:
writel_relaxed(val, portaddr(port, reg));
break;
}
}
#define wr_regl(port, reg, val) writel_relaxed(val, portaddr(port, reg))
static int exynos_uart_panic_handler(struct notifier_block *nb,
unsigned long l, void *p)
{
struct uart_port *port = &panic_port->port;
dev_err(panic_port->port.dev, " Register dump\n"
"ULCON 0x%08x "
"UCON 0x%08x "
"UFCON 0x%08x "
"UMCON 0x%08x\n"
"UTRSTAT 0x%08x "
"UERSTAT 0x%08x "
"UFSTAT 0x%08x "
"UMSTAT 0x%08x\n"
"UBRDIV 0x%08x "
"UFRACVAL 0x%08x "
"UINTP 0x%08x "
"UINTM 0x%08x\n"
, readl(port->membase + S3C2410_ULCON)
, readl(port->membase + S3C2410_UCON)
, readl(port->membase + S3C2410_UFCON)
, readl(port->membase + S3C2410_UMCON)
, readl(port->membase + S3C2410_UTRSTAT)
, readl(port->membase + S3C2410_UERSTAT)
, readl(port->membase + S3C2410_UFSTAT)
, readl(port->membase + S3C2410_UMSTAT)
, readl(port->membase + S3C2410_UBRDIV)
, readl(port->membase + S3C2443_DIVSLOT)
, readl(port->membase + S3C64XX_UINTP)
, readl(port->membase + S3C64XX_UINTM)
);
return 0;
}
static struct notifier_block exynos_uart_panic_block = {
.notifier_call = exynos_uart_panic_handler,
};
static void uart_sfr_dump(struct exynos_uart_port *ourport)
{
struct uart_port *port = &ourport->port;
dev_err(ourport->port.dev, " Register dump\n"
"ULCON 0x%08x "
"UCON 0x%08x "
"UFCON 0x%08x "
"UMCON 0x%08x\n"
"UTRSTAT 0x%08x "
"UERSTAT 0x%08x "
"UFSTAT 0x%08x "
"UMSTAT 0x%08x \n"
"UBRDIV 0x%08x "
"UFRACVAL 0x%08x "
"UINTP 0x%08x "
"UINTM 0x%08x\n"
, readl(port->membase + S3C2410_ULCON)
, readl(port->membase + S3C2410_UCON)
, readl(port->membase + S3C2410_UFCON)
, readl(port->membase + S3C2410_UMCON)
, readl(port->membase + S3C2410_UTRSTAT)
, readl(port->membase + S3C2410_UERSTAT)
, readl(port->membase + S3C2410_UFSTAT)
, readl(port->membase + S3C2410_UMSTAT)
, readl(port->membase + S3C2410_UBRDIV)
, readl(port->membase + S3C2443_DIVSLOT)
, readl(port->membase + S3C64XX_UINTP)
, readl(port->membase + S3C64XX_UINTM)
);
}
static void change_uart_gpio(int value, struct exynos_uart_port *ourport)
{
int status = 0;
if (value) {
if (!IS_ERR(ourport->uart_pinctrl_tx_dat)) {
ourport->default_uart_pinctrl->state = NULL;
status = pinctrl_select_state(ourport->default_uart_pinctrl, ourport->uart_pinctrl_tx_dat);
if (status)
dev_err(ourport->port.dev, "Can't set TXD uart pins!!!\n");
else
udelay(10);
}
if (!IS_ERR(ourport->uart_pinctrl_rts)) {
ourport->default_uart_pinctrl->state = NULL;
status = pinctrl_select_state(ourport->default_uart_pinctrl, ourport->uart_pinctrl_rts);
if (status)
dev_err(ourport->port.dev, "Can't set RTS uart pins!!!\n");
}
} else {
if (!IS_ERR(ourport->uart_pinctrl_default)) {
ourport->default_uart_pinctrl->state = NULL;
status = pinctrl_select_state(ourport->default_uart_pinctrl, ourport->uart_pinctrl_default);
if (status)
dev_err(ourport->port.dev, "Can't set default uart pins!!!\n");
}
}
}
static void print_uart_mode(struct uart_port *port,
struct ktermios *termios, unsigned int baud)
{
printk(KERN_ERR "UART port%d configurations\n", port->line);
switch (termios->c_cflag & CSIZE) {
case CS5:
printk(KERN_ERR " - 5bits word length\n");
break;
case CS6:
printk(KERN_ERR " - 6bits word length\n");
break;
case CS7:
printk(KERN_ERR " - 7bits word length\n");
break;
case CS8:
default:
printk(KERN_ERR " - 8bits word length\n");
break;
}
if (termios->c_cflag & CSTOPB)
printk(KERN_ERR " - Use TWO stop bit\n");
else
printk(KERN_ERR " - Use one stop bit\n");
if (termios->c_cflag & CRTSCTS)
printk(KERN_ERR " - Use Autoflow control\n");
printk(KERN_ERR " - Baudrate : %u\n", baud);
}
static ssize_t
uart_dbg_show(struct device *dev, struct device_attribute *attr, char *buf)
{
ssize_t ret = 0;
ret += snprintf(buf + ret, PAGE_SIZE - ret,
"UART Debug Mode Configuration.\n");
ret += snprintf(buf + ret, PAGE_SIZE - ret,
"0 : Change loopback & DBG mode.\n");
ret += snprintf(buf + ret, PAGE_SIZE - ret,
"1 : Change DBG mode.\n");
ret += snprintf(buf + ret, PAGE_SIZE - ret,
"2 : Change Normal mode.\n");
if (ret < PAGE_SIZE - 1) {
ret += snprintf(buf+ret, PAGE_SIZE-ret, "\n");
} else {
buf[PAGE_SIZE-2] = '\n';
buf[PAGE_SIZE-1] = '\0';
ret = PAGE_SIZE-1;
}
return ret;
}
static ssize_t
uart_dbg_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int input_cmd = 0, ret;
struct exynos_uart_port *ourport;
ret = sscanf(buf, "%d", &input_cmd);
list_for_each_entry(ourport, &drvdata_list, node) {
if (&ourport->pdev->dev != dev)
continue;
switch(input_cmd) {
case 0:
printk(KERN_ERR "Change UART%d to Loopback(DBG) mode\n",
ourport->port.line);
ourport->dbg_mode = UART_DBG_MODE | UART_LOOPBACK_MODE;
break;
case 1:
printk(KERN_ERR "Change UART%d to DBG mode\n",
ourport->port.line);
ourport->dbg_mode = UART_DBG_MODE;
break;
case 2:
printk(KERN_ERR "Change UART%d to normal mode\n",
ourport->port.line);
ourport->dbg_mode = 0;
break;
default:
printk(KERN_ERR "Wrong Command!(0/1/2)\n");
}
}
return count;
}
static DEVICE_ATTR(uart_dbg, 0640, uart_dbg_show, uart_dbg_store);
static ssize_t
uart_error_cnt_show(struct device *dev, struct device_attribute *attr, char *buf)
{
int ret = 0;
struct exynos_uart_port *ourport;
sprintf(buf, "000 000 000 000\n");//init buf : overrun parity frame break count
list_for_each_entry(ourport, &drvdata_list, node) {
struct uart_port *port = &ourport->port;
if (&ourport->pdev->dev != dev)
continue;
ret = sprintf(buf, "%03x %03x %03x %03x\n", port->icount.overrun, 0, port->icount.frame, port->icount.brk);
}
return ret;
}
static DEVICE_ATTR(error_cnt, 0444, uart_error_cnt_show, NULL);
struct proc_dir_entry *bluetooth_dir, *bt_log_dir;
struct proc_dir_entry *serial_dir, *serial_log_dir;
static void exynos_usi_init(struct uart_port *port);
static void exynos_usi_stop(struct uart_port *port);
static void uart_copy_to_local_buf(int dir, struct uart_local_buf* local_buf,
unsigned char* trace_buf, int len)
{
unsigned long long time;
unsigned long rem_nsec;
int i;
int cpu = raw_smp_processor_id();
time = cpu_clock(cpu);
rem_nsec = do_div(time, NSEC_PER_SEC);
if (local_buf->index + (len * 3 + 30) >= local_buf->size) {
local_buf->index = 0;
}
local_buf->index += snprintf(local_buf->buffer + local_buf->index,
local_buf->size - local_buf->index,
"[%5lu.%06lu] ",
(unsigned long)time, rem_nsec / NSEC_PER_USEC);
if (dir == 3) {
local_buf->index += scnprintf(local_buf->buffer + local_buf->index,
local_buf->size - local_buf->index, "[termios] ");
local_buf->index += scnprintf(local_buf->buffer + local_buf->index,
local_buf->size - local_buf->index,
"%s", trace_buf);
} else if (dir == 2) {
local_buf->index += scnprintf(local_buf->buffer + local_buf->index,
local_buf->size - local_buf->index, "[reg] ");
local_buf->index += scnprintf(local_buf->buffer + local_buf->index,
local_buf->size - local_buf->index,
"%s", trace_buf);
} else {
if (dir == 1)
local_buf->index += snprintf(local_buf->buffer + local_buf->index,
local_buf->size - local_buf->index, "[RX] ");
else
local_buf->index += snprintf(local_buf->buffer + local_buf->index,
local_buf->size - local_buf->index, "[TX] ");
for (i = 0; i < len; i++) {
local_buf->index += snprintf(local_buf->buffer + local_buf->index,
local_buf->size - local_buf->index,
"%02X ", trace_buf[i]);
}
}
local_buf->index += snprintf(local_buf->buffer + local_buf->index,
local_buf->size - local_buf->index, "\n");
}
static void exynos_serial_resetport(struct uart_port *port,
struct s3c2410_uartcfg *cfg);
static void exynos_serial_pm(struct uart_port *port, unsigned int level,
unsigned int old);
static struct uart_driver exynos_uart_drv;
static inline void uart_clock_enable(struct exynos_uart_port *ourport)
{
if (ourport->check_separated_clk)
clk_prepare_enable(ourport->separated_clk);
clk_prepare_enable(ourport->clk);
}
static inline void uart_clock_disable(struct exynos_uart_port *ourport)
{
clk_disable_unprepare(ourport->clk);
if (ourport->check_separated_clk)
clk_disable_unprepare(ourport->separated_clk);
}
static inline struct exynos_uart_port *to_ourport(struct uart_port *port)
{
return container_of(port, struct exynos_uart_port, port);
}
/* translate a port to the device name */
static inline const char *exynos_serial_portname(struct uart_port *port)
{
return to_platform_device(port->dev)->name;
}
static int exynos_serial_txempty_nofifo(struct uart_port *port)
{
return rd_regl(port, S3C2410_UTRSTAT) & S3C2410_UTRSTAT_TXE;
}
/*
* s3c64xx and later SoC's include the interrupt mask and status registers in
* the controller itself, unlike the exynos SoC's which have these registers
* in the interrupt controller. Check if the port type is s3c64xx or higher.
*/
static int exynos_serial_has_interrupt_mask(struct uart_port *port)
{
return to_ourport(port)->info->type == PORT_S3C6400;
}
static void exynos_serial_rx_enable(struct uart_port *port)
{
struct exynos_uart_port *ourport = to_ourport(port);
unsigned long flags;
unsigned int ucon, ufcon;
int count = 10000;
spin_lock_irqsave(&port->lock, flags);
while (--count && !exynos_serial_txempty_nofifo(port))
udelay(100);
ufcon = rd_regl(port, S3C2410_UFCON);
ufcon |= S3C2410_UFCON_RESETRX;
wr_regl(port, S3C2410_UFCON, ufcon);
ucon = rd_regl(port, S3C2410_UCON);
ucon |= S3C2410_UCON_RXIRQMODE;
wr_regl(port, S3C2410_UCON, ucon);
ourport->rx_enabled = 1;
spin_unlock_irqrestore(&port->lock, flags);
}
static void exynos_serial_rx_disable(struct uart_port *port)
{
struct exynos_uart_port *ourport = to_ourport(port);
unsigned long flags;
unsigned int ucon;
spin_lock_irqsave(&port->lock, flags);
ucon = rd_regl(port, S3C2410_UCON);
ucon &= ~S3C2410_UCON_RXIRQMODE;
wr_regl(port, S3C2410_UCON, ucon);
ourport->rx_enabled = 0;
spin_unlock_irqrestore(&port->lock, flags);
}
static void exynos_serial_stop_tx(struct uart_port *port)
{
struct exynos_uart_port *ourport = to_ourport(port);
struct exynos_uart_dma *dma = ourport->dma;
struct circ_buf *xmit = &port->state->xmit;
struct dma_tx_state state;
int count;
if (!ourport->tx_enabled)
return;
if (exynos_serial_has_interrupt_mask(port))
__set_bit(S3C64XX_UINTM_TXD,
portaddrl(port, S3C64XX_UINTM));
else
disable_irq_nosync(ourport->tx_irq);
if (dma && dma->tx_chan && ourport->tx_in_progress == EXYNOS_TX_DMA) {
dmaengine_pause(dma->tx_chan);
dmaengine_tx_status(dma->tx_chan, dma->tx_cookie, &state);
dmaengine_terminate_all(dma->tx_chan);
dma_sync_single_for_cpu(ourport->port.dev,
dma->tx_transfer_addr, dma->tx_size, DMA_TO_DEVICE);
async_tx_ack(dma->tx_desc);
count = dma->tx_bytes_requested - state.residue;
xmit->tail = (xmit->tail + count) & (uart_xmit_size - 1);
port->icount.tx += count;
}
ourport->tx_enabled = 0;
ourport->tx_in_progress = 0;
if (port->flags & UPF_CONS_FLOW)
exynos_serial_rx_enable(port);
ourport->tx_mode = 0;
}
static void exynos_serial_start_next_tx(struct exynos_uart_port *ourport);
static void exynos_serial_tx_dma_complete(void *args)
{
struct exynos_uart_port *ourport = args;
struct uart_port *port = &ourport->port;
struct circ_buf *xmit = &port->state->xmit;
struct exynos_uart_dma *dma = ourport->dma;
struct dma_tx_state state;
unsigned long flags;
int count;
dmaengine_tx_status(dma->tx_chan, dma->tx_cookie, &state);
count = dma->tx_bytes_requested - state.residue;
async_tx_ack(dma->tx_desc);
dma_sync_single_for_cpu(ourport->port.dev, dma->tx_transfer_addr,
dma->tx_size, DMA_TO_DEVICE);
spin_lock_irqsave(&dma->tx_lock, flags);
xmit->tail = (xmit->tail + count) & (uart_xmit_size - 1);
port->icount.tx += count;
ourport->tx_in_progress = 0;
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
exynos_serial_start_next_tx(ourport);
spin_unlock_irqrestore(&dma->tx_lock, flags);
}
static void enable_tx_dma(struct exynos_uart_port *ourport)
{
struct uart_port *port = &ourport->port;
u32 ucon;
/* Mask Tx interrupt */
if (exynos_serial_has_interrupt_mask(port))
__set_bit(S3C64XX_UINTM_TXD,
portaddrl(port, S3C64XX_UINTM));
else
disable_irq_nosync(ourport->tx_irq);
/* Enable tx dma mode */
ucon = rd_regl(port, S3C2410_UCON);
ucon &= ~(S3C64XX_UCON_TXBURST_MASK | S3C64XX_UCON_TXMODE_MASK);
/*
ucon |= (dma_get_cache_alignment() >= 16) ?
S3C64XX_UCON_TXBURST_16 : S3C64XX_UCON_TXBURST_1;
*/
ucon |= S3C64XX_UCON_TXBURST_1;
ucon |= S3C64XX_UCON_TXMODE_DMA;
wr_regl(port, S3C2410_UCON, ucon);
ourport->tx_mode = EXYNOS_TX_DMA;
}
static void enable_tx_pio(struct exynos_uart_port *ourport)
{
struct uart_port *port = &ourport->port;
u32 ucon, ufcon;
/* Set ufcon txtrig */
ourport->tx_in_progress = EXYNOS_TX_PIO;
ufcon = rd_regl(port, S3C2410_UFCON);
wr_regl(port, S3C2410_UFCON, ufcon);
/* Enable tx pio mode */
ucon = rd_regl(port, S3C2410_UCON);
ucon &= ~(S3C64XX_UCON_TXMODE_MASK);
ucon |= S3C64XX_UCON_TXMODE_CPU;
wr_regl(port, S3C2410_UCON, ucon);
/* Unmask Tx interrupt */
if (exynos_serial_has_interrupt_mask(port))
__clear_bit(S3C64XX_UINTM_TXD,
portaddrl(port, S3C64XX_UINTM));
else
enable_irq(ourport->tx_irq);
ourport->tx_mode = EXYNOS_TX_PIO;
}
static void exynos_serial_start_tx_pio(struct exynos_uart_port *ourport)
{
if (ourport->tx_mode != EXYNOS_TX_PIO)
enable_tx_pio(ourport);
}
static int exynos_serial_start_tx_dma(struct exynos_uart_port *ourport,
unsigned int count)
{
struct uart_port *port = &ourport->port;
struct circ_buf *xmit = &port->state->xmit;
struct exynos_uart_dma *dma = ourport->dma;
if (ourport->tx_mode != EXYNOS_TX_DMA)
enable_tx_dma(ourport);
dma->tx_size = count & ~(dma_get_cache_alignment() - 1);
dma->tx_transfer_addr = dma->tx_addr + xmit->tail;
if (ourport->uart_logging && dma->tx_size)
uart_copy_to_local_buf(0, &ourport->uart_local_buf, ourport->port.state->xmit.buf + xmit->tail, dma->tx_size);
dma_sync_single_for_device(ourport->port.dev, dma->tx_transfer_addr,
dma->tx_size, DMA_TO_DEVICE);
dma->tx_desc = dmaengine_prep_slave_single(dma->tx_chan,
dma->tx_transfer_addr, dma->tx_size,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
if (!dma->tx_desc) {
dev_err(ourport->port.dev, "Unable to get desc for Tx\n");
return -EIO;
}
dma->tx_desc->callback = exynos_serial_tx_dma_complete;
dma->tx_desc->callback_param = ourport;
dma->tx_bytes_requested = dma->tx_size;
ourport->tx_in_progress = EXYNOS_TX_DMA;
dma->tx_cookie = dmaengine_submit(dma->tx_desc);
dma_async_issue_pending(dma->tx_chan);
return 0;
}
static void exynos_serial_start_next_tx(struct exynos_uart_port *ourport)
{
struct uart_port *port = &ourport->port;
struct circ_buf *xmit = &port->state->xmit;
unsigned long count;
/* Get data size up to the end of buffer */
count = CIRC_CNT_TO_END(xmit->head, xmit->tail, uart_xmit_size);
if (!count) {
exynos_serial_stop_tx(port);
return;
}
if (!ourport->dma || !ourport->dma->tx_chan ||
count < ourport->min_dma_size ||
xmit->tail & (dma_get_cache_alignment() - 1))
exynos_serial_start_tx_pio(ourport);
else
exynos_serial_start_tx_dma(ourport, count);
}
static void exynos_serial_start_tx(struct uart_port *port)
{
struct exynos_uart_port *ourport = to_ourport(port);
struct circ_buf *xmit = &port->state->xmit;
if (uart_circ_empty(xmit))
return;
if (ourport->port.line == BLUETOOTH_UART_PORT_LINE &&
s3c2410_serial_wake_peer[BLUETOOTH_UART_PORT_LINE]) {
if (ourport->wake_peer_en) {
s3c2410_serial_wake_peer[BLUETOOTH_UART_PORT_LINE](port);
} else
ourport->wake_peer_pended = 1;
}
if (!ourport->tx_enabled) {
if (port->flags & UPF_CONS_FLOW)
exynos_serial_rx_disable(port);
ourport->tx_enabled = 1;
if (!ourport->dma || !ourport->dma->tx_chan)
exynos_serial_start_tx_pio(ourport);
}
if (ourport->dma && ourport->dma->tx_chan) {
if (!uart_circ_empty(xmit) && !ourport->tx_in_progress)
exynos_serial_start_next_tx(ourport);
}
}
/* Throttle is called in n_tty_receive_buf_common */
static void exynos_serial_throttle(struct uart_port *port)
{
struct exynos_uart_port *ourport = to_ourport(port);
unsigned long flags;
spin_lock_irqsave(&port->lock, flags);
__set_bit(S3C64XX_UINTM_RXD, portaddrl(port, S3C64XX_UINTM));
wr_regl(port, S3C64XX_UINTP, S3C64XX_UINTM_RXD_MSK);
if (ourport->port.line == BLUETOOTH_UART_PORT_LINE) {
snprintf(uart_log_buf, LOG_REG_DEBUG_LEN,"[7] UMCON:0x%08x UFSTAT:0x%08x UINTP:0x%08x UCON:0x%08x UMSTAT:0x%08x",
rd_regl(port, S3C2410_UMCON), rd_regl(port, S3C2410_UFSTAT), rd_regl(port, S3C64XX_UINTP),
rd_regl(port, S3C2410_UCON), rd_regl(port, S3C2410_UMSTAT));
uart_copy_to_local_buf(2, &ourport->uart_local_buf, uart_log_buf, sizeof(uart_log_buf));
}
spin_unlock_irqrestore(&port->lock, flags);
}
/* Unthrottle is called in n_tty_read */
static void exynos_serial_unthrottle(struct uart_port *port)
{
struct exynos_uart_port *ourport = to_ourport(port);
unsigned long flags;
spin_lock_irqsave(&port->lock, flags);
__clear_bit(S3C64XX_UINTM_RXD, portaddrl(port, S3C64XX_UINTM));
if (ourport->port.line == BLUETOOTH_UART_PORT_LINE) {
snprintf(uart_log_buf, LOG_REG_DEBUG_LEN,"[8] UMCON:0x%08x UFSTAT:0x%08x UINTP:0x%08x UCON:0x%08x UMSTAT:0x%08x",
rd_regl(port, S3C2410_UMCON), rd_regl(port, S3C2410_UFSTAT), rd_regl(port, S3C64XX_UINTP),
rd_regl(port, S3C2410_UCON), rd_regl(port, S3C2410_UMSTAT));
uart_copy_to_local_buf(2, &ourport->uart_local_buf, uart_log_buf, sizeof(uart_log_buf));
}
spin_unlock_irqrestore(&port->lock, flags);
}
static void exynos_uart_copy_rx_to_tty(struct exynos_uart_port *ourport,
struct tty_port *tty, int count)
{
struct exynos_uart_dma *dma = ourport->dma;
int copied;
if (!count)
return;
dma_sync_single_for_cpu(ourport->port.dev, dma->rx_addr,
dma->rx_size, DMA_FROM_DEVICE);
ourport->port.icount.rx += count;
if (!tty) {
dev_err(ourport->port.dev, "No tty port\n");
return;
}
if (ourport->uart_logging && count)
uart_copy_to_local_buf(1, &ourport->uart_local_buf, ourport->dma->rx_buf, count);
copied = tty_insert_flip_string(tty,
((unsigned char *)(ourport->dma->rx_buf)), count);
if (copied != count) {
WARN_ON(1);
dev_err(ourport->port.dev, "RxData copy to tty layer failed\n");
}
}
static void exynos_serial_stop_rx(struct uart_port *port)
{
struct exynos_uart_port *ourport = to_ourport(port);
struct exynos_uart_dma *dma = ourport->dma;
struct tty_port *t = &port->state->port;
struct dma_tx_state state;
enum dma_status dma_status;
unsigned int received;
if (ourport->rx_enabled) {
pr_debug("exynos_serial_stop_rx: port=%p\n", port);
if (exynos_serial_has_interrupt_mask(port))
__set_bit(S3C64XX_UINTM_RXD,
portaddrl(port, S3C64XX_UINTM));
else
disable_irq_nosync(ourport->rx_irq);
ourport->rx_enabled = 0;
}
if (dma && dma->rx_chan) {
dmaengine_pause(dma->tx_chan);
dma_status = dmaengine_tx_status(dma->rx_chan,
dma->rx_cookie, &state);
if (dma_status == DMA_IN_PROGRESS ||
dma_status == DMA_PAUSED) {
received = dma->rx_bytes_requested - state.residue;
dmaengine_terminate_all(dma->rx_chan);
exynos_uart_copy_rx_to_tty(ourport, t, received);
}
}
}
static inline struct exynos_uart_info
*exynos_port_to_info(struct uart_port *port)
{
return to_ourport(port)->info;
}
static inline struct s3c2410_uartcfg
*exynos_port_to_cfg(struct uart_port *port)
{
struct exynos_uart_port *ourport;
if (port->dev == NULL)
return NULL;
ourport = container_of(port, struct exynos_uart_port, port);
return ourport->cfg;
}
static int exynos_serial_rx_fifocnt(struct exynos_uart_port *ourport,
unsigned long ufstat)
{
struct exynos_uart_info *info = ourport->info;
if (ufstat & info->rx_fifofull)
return ourport->port.fifosize;
return (ufstat & info->rx_fifomask) >> info->rx_fifoshift;
}
static void s3c64xx_start_rx_dma(struct exynos_uart_port *ourport);
static void exynos_serial_rx_dma_complete(void *args)
{
struct exynos_uart_port *ourport = args;
struct uart_port *port = &ourport->port;
struct exynos_uart_dma *dma = ourport->dma;
struct tty_port *t = &port->state->port;
struct tty_struct *tty = tty_port_tty_get(&ourport->port.state->port);
struct dma_tx_state state;
unsigned long flags;
int received;
dmaengine_tx_status(dma->rx_chan, dma->rx_cookie, &state);
received = dma->rx_bytes_requested - state.residue;
async_tx_ack(dma->rx_desc);
spin_lock_irqsave(&dma->rx_lock, flags);
if (received)
exynos_uart_copy_rx_to_tty(ourport, t, received);
if (tty) {
tty_flip_buffer_push(t);
tty_kref_put(tty);
}
s3c64xx_start_rx_dma(ourport);
spin_unlock_irqrestore(&dma->rx_lock, flags);
}
static void s3c64xx_start_rx_dma(struct exynos_uart_port *ourport)
{
struct exynos_uart_dma *dma = ourport->dma;
dma_sync_single_for_device(ourport->port.dev, dma->rx_addr,
dma->rx_size, DMA_FROM_DEVICE);
dma->rx_desc = dmaengine_prep_slave_single(dma->rx_chan,
dma->rx_addr, dma->rx_size, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT);
if (!dma->rx_desc) {
dev_err(ourport->port.dev, "Unable to get desc for Rx\n");
return;
}
dma->rx_desc->callback = exynos_serial_rx_dma_complete;
dma->rx_desc->callback_param = ourport;
dma->rx_bytes_requested = dma->rx_size;
dma->rx_cookie = dmaengine_submit(dma->rx_desc);
dma_async_issue_pending(dma->rx_chan);
}
static int exynos_serial_tx_fifocnt(struct exynos_uart_port *ourport,
unsigned long ufstat)
{
struct exynos_uart_info *info = ourport->info;
if (ufstat & info->tx_fifofull)
return ourport->port.fifosize;
return (ufstat & info->tx_fifomask) >> info->tx_fifoshift;
}
/* ? - where has parity gone?? */
#define S3C2410_UERSTAT_PARITY (0x1000)
static void enable_rx_dma(struct exynos_uart_port *ourport)
{
struct uart_port *port = &ourport->port;
unsigned int ucon;
/* set rx mode to dma mode */
ucon = rd_regl(port, S3C2410_UCON);
ucon &= ~(S3C64XX_UCON_RXBURST_MASK |
S3C64XX_UCON_TIMEOUT_MASK |
S3C64XX_UCON_EMPTYINT_EN |
S3C64XX_UCON_DMASUS_EN |
S3C64XX_UCON_TIMEOUT_EN |
S3C64XX_UCON_RXMODE_MASK);
ucon |= S3C64XX_UCON_RXBURST_1 |
0xf << S3C64XX_UCON_TIMEOUT_SHIFT |
S3C64XX_UCON_EMPTYINT_EN |
S3C64XX_UCON_TIMEOUT_EN |
S3C64XX_UCON_RXMODE_DMA;
wr_regl(port, S3C2410_UCON, ucon);
ourport->rx_mode = EXYNOS_RX_DMA;
}
static void enable_rx_pio(struct exynos_uart_port *ourport)
{
struct uart_port *port = &ourport->port;
unsigned int ucon;
/* set rx mode to dma mode */
ucon = rd_regl(port, S3C2410_UCON);
ucon &= ~(S3C64XX_UCON_TIMEOUT_MASK |
S3C64XX_UCON_EMPTYINT_EN |
S3C64XX_UCON_DMASUS_EN |
S3C64XX_UCON_TIMEOUT_EN |
S3C64XX_UCON_RXMODE_MASK);
ucon |= S3C64XX_UCON_TIMEOUT_EN |
S3C64XX_UCON_RXMODE_CPU;
wr_regl(port, S3C2410_UCON, ucon);
ourport->rx_mode = EXYNOS_RX_PIO;
}
static void exynos_serial_rx_drain_fifo(struct exynos_uart_port *ourport);
static irqreturn_t exynos_serial_rx_chars_dma(void *dev_id)
{
unsigned int utrstat, ufstat, received;
struct exynos_uart_port *ourport = dev_id;
struct uart_port *port = &ourport->port;
struct exynos_uart_dma *dma = ourport->dma;
struct tty_port *t = &port->state->port;
unsigned long flags;
struct dma_tx_state state;
utrstat = rd_regl(port, S3C2410_UTRSTAT);
ufstat = rd_regl(port, S3C2410_UFSTAT);
spin_lock_irqsave(&port->lock, flags);
if (!(utrstat & S3C2410_UTRSTAT_TIMEOUT) && (ourport->rx_mode == EXYNOS_RX_PIO)) {
s3c64xx_start_rx_dma(ourport);
enable_rx_dma(ourport);
wr_regl(port, S3C64XX_UINTP, S3C64XX_UINTM_RXD_MSK);
wr_regl(port, S3C2410_UTRSTAT, S3C2410_UTRSTAT_TIMEOUT);
goto finish;
}
if (ourport->rx_mode == EXYNOS_RX_DMA) {
dmaengine_pause(dma->rx_chan);
dmaengine_tx_status(dma->rx_chan, dma->rx_cookie, &state);
dmaengine_terminate_all(dma->rx_chan);
received = dma->rx_bytes_requested - state.residue;
exynos_uart_copy_rx_to_tty(ourport, t, received);
enable_rx_pio(ourport);
}
exynos_serial_rx_drain_fifo(ourport);
wr_regl(port, S3C2410_UTRSTAT, S3C2410_UTRSTAT_TIMEOUT);
finish:
spin_unlock_irqrestore(&port->lock, flags);
return IRQ_HANDLED;
}
static void exynos_serial_rx_drain_fifo(struct exynos_uart_port *ourport)
{
struct uart_port *port = &ourport->port;
unsigned int ufcon, ch, flag, ufstat, uerstat;
unsigned int fifocnt = 0;
int max_count = port->fifosize;
unsigned char insert_buf[256] = {0, };
unsigned int insert_cnt = 0;
unsigned char trace_buf[256] = {0, };
int trace_cnt = 0;
__set_bit(S3C64XX_UINTM_RXD, portaddrl(port, S3C64XX_UINTM));
wr_regl(port, S3C64XX_UINTP, S3C64XX_UINTM_RXD_MSK);
while (max_count-- > 0) {
/*
* Receive all characters known to be in FIFO
* before reading FIFO level again
*/
if (fifocnt == 0) {
ufstat = rd_regl(port, S3C2410_UFSTAT);
fifocnt = exynos_serial_rx_fifocnt(ourport, ufstat);
if (fifocnt == 0)
break;
}
fifocnt--;
uerstat = rd_regl(port, S3C2410_UERSTAT);
ch = rd_reg(port, S3C2410_URXH);
if (port->flags & UPF_CONS_FLOW) {
int txe = exynos_serial_txempty_nofifo(port);
if (ourport->rx_enabled) {
if (!txe) {
ourport->rx_enabled = 0;
continue;
}
} else {
if (txe) {
ufcon = rd_regl(port, S3C2410_UFCON);
ufcon |= S3C2410_UFCON_RESETRX;
wr_regl(port, S3C2410_UFCON, ufcon);
ourport->rx_enabled = 1;
goto out;
}
continue;
}
}
/* insert the character into the buffer */
flag = TTY_NORMAL;
port->icount.rx++;
if (unlikely(uerstat & S3C2410_UERSTAT_ANY)) {
pr_debug("rxerr: port ch=0x%02x, rxs=0x%08x\n",
ch, uerstat);
uart_sfr_dump(ourport);
/* check for break */
if (uerstat & S3C2410_UERSTAT_BREAK) {
pr_debug("break!\n");
port->icount.brk++;
if (uart_handle_break(port))
continue; /* Ignore character */
}
if (uerstat & S3C2410_UERSTAT_FRAME) {
pr_err("[tty] uerstat & S3C2410_UERSTAT_FRAME!\n");
port->icount.frame++;
}
if (uerstat & S3C2410_UERSTAT_OVERRUN) {
pr_err("[tty] uerstat & S3C2410_UERSTAT_OVERRUN!\n");
port->icount.overrun++;
}
uerstat &= port->read_status_mask;
if (uerstat & S3C2410_UERSTAT_BREAK) {
pr_err("[tty] uerstat & S3C2410_UERSTAT_BREAK2!\n");
flag = TTY_BREAK;
}
else if (uerstat & S3C2410_UERSTAT_PARITY) {
pr_err("[tty] uerstat & S3C2410_UERSTAT_PARITY!\n");
flag = TTY_PARITY;
}
else if (uerstat & (S3C2410_UERSTAT_FRAME |
S3C2410_UERSTAT_OVERRUN))
flag = TTY_FRAME;
}
if (uart_handle_sysrq_char(port, ch))
continue; /* Ignore character */
insert_buf[insert_cnt++] = ch;
if (ourport->uart_logging)
trace_buf[trace_cnt++] = ch;
}
if (ourport->uart_logging && trace_cnt)
uart_copy_to_local_buf(1, &ourport->uart_local_buf, trace_buf, trace_cnt);
__clear_bit(S3C64XX_UINTM_RXD, portaddrl(port, S3C64XX_UINTM));
tty_insert_flip_string(&port->state->port, insert_buf, insert_cnt);
tty_flip_buffer_push(&port->state->port);
out:
if (ourport->port.line == BLUETOOTH_UART_PORT_LINE) {
snprintf(uart_log_buf, LOG_REG_DEBUG_LEN,"[0] UMCON:0x%08x UFSTAT:0x%08x UINTP:0x%08x UCON:0x%08x UMSTAT:0x%08x",
rd_regl(port, S3C2410_UMCON), rd_regl(port, S3C2410_UFSTAT), rd_regl(port, S3C64XX_UINTP),
rd_regl(port, S3C2410_UCON), rd_regl(port, S3C2410_UMSTAT));
uart_copy_to_local_buf(2, &ourport->uart_local_buf, uart_log_buf, sizeof(uart_log_buf));
}
}
static irqreturn_t
exynos_serial_rx_chars_pio(void *dev_id)
{
struct exynos_uart_port *ourport = dev_id;
struct uart_port *port = &ourport->port;
unsigned long flags;
spin_lock_irqsave(&port->lock, flags);
exynos_serial_rx_drain_fifo(ourport);
spin_unlock_irqrestore(&port->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t exynos_serial_rx_chars(int irq, void *dev_id)
{
struct exynos_uart_port *ourport = dev_id;
if (ourport->dma && ourport->dma->rx_chan)
return exynos_serial_rx_chars_dma(dev_id);
return exynos_serial_rx_chars_pio(dev_id);
}
static irqreturn_t exynos_serial_tx_chars(int irq, void *id)
{
struct exynos_uart_port *ourport = id;
struct uart_port *port = &ourport->port;
struct circ_buf *xmit = &port->state->xmit;
unsigned long flags;
int count = port->fifosize, dma_count = 0;
unsigned char trace_buf[256] = {0, };
int trace_cnt = 0;
if (ourport->port.line == BLUETOOTH_UART_PORT_LINE) {
snprintf(uart_log_buf, LOG_REG_DEBUG_LEN,"[1] UMCON:0x%08x UFSTAT:0x%08x UINTP:0x%08x UCON:0x%08x UMSTAT:0x%08x",
rd_regl(port, S3C2410_UMCON), rd_regl(port, S3C2410_UFSTAT), rd_regl(port, S3C64XX_UINTP),
rd_regl(port, S3C2410_UCON), rd_regl(port, S3C2410_UMSTAT));
uart_copy_to_local_buf(2, &ourport->uart_local_buf, uart_log_buf, sizeof(uart_log_buf));
}
spin_lock_irqsave(&port->lock, flags);
count = CIRC_CNT_TO_END(xmit->head, xmit->tail, uart_xmit_size);
if (ourport->dma && ourport->dma->tx_chan &&
count >= ourport->min_dma_size) {
int align = dma_get_cache_alignment() -
(xmit->tail & (dma_get_cache_alignment() - 1));
if (count-align >= ourport->min_dma_size) {
dma_count = count-align;
count = align;
}
}
if (port->x_char) {
wr_reg(port, S3C2410_UTXH, port->x_char);
if (ourport->uart_logging)
trace_buf[trace_cnt++] = port->x_char;
port->icount.tx++;
port->x_char = 0;
goto out;
}
/* if there isn't anything more to transmit, or the uart is now
* stopped, disable the uart and exit
*/
if (uart_circ_empty(xmit) || uart_tx_stopped(port)) {
exynos_serial_stop_tx(port);
goto out;
}
/* try and drain the buffer... */
if (count > port->fifosize) {
count = port->fifosize;
dma_count = 0;
}
while (!uart_circ_empty(xmit) && count-- > 0) {
if (rd_regl(port, S3C2410_UFSTAT) & ourport->info->tx_fifofull)
break;
wr_reg(port, S3C2410_UTXH, xmit->buf[xmit->tail]);
if (ourport->uart_logging)
trace_buf[trace_cnt++] = (unsigned char)xmit->buf[xmit->tail];
xmit->tail = (xmit->tail + 1) & (uart_xmit_size - 1);
port->icount.tx++;
}
if (!count && dma_count) {
exynos_serial_start_tx_dma(ourport, dma_count);
goto out;
}
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) {
spin_unlock_irqrestore(&port->lock, flags);
uart_write_wakeup(port);
spin_lock_irqsave(&port->lock, flags);
}
if (uart_circ_empty(xmit))
exynos_serial_stop_tx(port);
out:
wr_regl(port, S3C64XX_UINTP, S3C64XX_UINTM_TXD_MSK);
if (ourport->uart_logging && trace_cnt)
uart_copy_to_local_buf(0, &ourport->uart_local_buf, trace_buf, trace_cnt);
spin_unlock_irqrestore(&port->lock, flags);
return IRQ_HANDLED;
}
#ifdef CONFIG_ARM_EXYNOS_DEVFREQ
static void s3c64xx_serial_qos_func(struct work_struct *work)
{
struct exynos_uart_port *ourport =
container_of(work, struct exynos_uart_port, qos_work.work);
struct uart_port *port = &ourport->port;
if (ourport->mif_qos_val)
pm_qos_update_request_timeout(&ourport->exynos_uart_mif_qos,
ourport->mif_qos_val, ourport->qos_timeout);
if (ourport->cpu_qos_val)
pm_qos_update_request_timeout(&ourport->exynos_uart_cpu_qos,
ourport->cpu_qos_val, ourport->qos_timeout);
if (ourport->uart_irq_affinity)
irq_set_affinity(port->irq, cpumask_of(ourport->uart_irq_affinity));
}
#endif
/* interrupt handler for s3c64xx and later SoC's.*/
static irqreturn_t s3c64xx_serial_handle_irq(int irq, void *id)
{
struct exynos_uart_port *ourport = id;
struct uart_port *port = &ourport->port;
irqreturn_t ret = IRQ_HANDLED;
#ifdef CONFIG_PM_DEVFREQ
if ((ourport->mif_qos_val || ourport->cpu_qos_val)
&& ourport->qos_timeout)
schedule_delayed_work(&ourport->qos_work,
msecs_to_jiffies(100));
#endif
if (rd_regl(port, S3C64XX_UINTP) & S3C64XX_UINTM_RXD_MSK)
ret = exynos_serial_rx_chars(irq, id);
if (rd_regl(port, S3C64XX_UINTP) & S3C64XX_UINTM_TXD_MSK)
ret = exynos_serial_tx_chars(irq, id);
return ret;
}
static unsigned int exynos_serial_tx_empty(struct uart_port *port)
{
struct exynos_uart_info *info = exynos_port_to_info(port);
unsigned long ufstat = rd_regl(port, S3C2410_UFSTAT);
unsigned long ufcon = rd_regl(port, S3C2410_UFCON);
if (ufcon & S3C2410_UFCON_FIFOMODE) {
if ((ufstat & info->tx_fifomask) != 0 ||
(ufstat & info->tx_fifofull))
return 0;
return 1;
}
return exynos_serial_txempty_nofifo(port);
}
/* no modem control lines */
static unsigned int exynos_serial_get_mctrl(struct uart_port *port)
{
unsigned int umstat = rd_reg(port, S3C2410_UMSTAT);
struct exynos_uart_port *ourport = to_ourport(port);
if (umstat & S3C2410_UMSTAT_CTS || ourport->port.line == BLUETOOTH_UART_PORT_LINE)
return TIOCM_CAR | TIOCM_DSR | TIOCM_CTS;
else
return TIOCM_CAR | TIOCM_DSR;
}
static void exynos_serial_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
unsigned int umcon = rd_regl(port, S3C2410_UMCON);
struct exynos_uart_port *ourport = to_ourport(port);
if (mctrl & TIOCM_RTS)
umcon |= S3C2410_UMCOM_RTS_LOW;
else
umcon &= ~S3C2410_UMCOM_RTS_LOW;
wr_regl(port, S3C2410_UMCON, umcon);
if (ourport->port.line == BLUETOOTH_UART_PORT_LINE) {
snprintf(uart_log_buf, LOG_REG_DEBUG_LEN,"[2] UMCON:0x%08x UFSTAT:0x%08x UINTP:0x%08x UCON:0x%08x UMSTAT:0x%08x",
rd_regl(port, S3C2410_UMCON), rd_regl(port, S3C2410_UFSTAT), rd_regl(port, S3C64XX_UINTP),
rd_regl(port, S3C2410_UCON), rd_regl(port, S3C2410_UMSTAT));
uart_copy_to_local_buf(2, &ourport->uart_local_buf, uart_log_buf, sizeof(uart_log_buf));
}
}
static void exynos_serial_break_ctl(struct uart_port *port, int break_state)
{
unsigned long flags;
unsigned int ucon;
spin_lock_irqsave(&port->lock, flags);
ucon = rd_regl(port, S3C2410_UCON);
if (break_state)
ucon |= S3C2410_UCON_SBREAK;
else
ucon &= ~S3C2410_UCON_SBREAK;
wr_regl(port, S3C2410_UCON, ucon);
spin_unlock_irqrestore(&port->lock, flags);
}
static int exynos_serial_request_dma(struct exynos_uart_port *ourport)
{
struct exynos_uart_dma *dma = ourport->dma;
struct dma_slave_caps dma_caps;
const char *reason = NULL;
int ret;
/* Default slave configuration parameters */
dma->rx_conf.direction = DMA_DEV_TO_MEM;
dma->rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
dma->rx_conf.src_addr = ourport->port.mapbase + S3C2410_URXH;
dma->rx_conf.src_maxburst = 1;
dma->tx_conf.direction = DMA_MEM_TO_DEV;
dma->tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
dma->tx_conf.dst_addr = ourport->port.mapbase + S3C2410_UTXH;
dma->tx_conf.dst_maxburst = 1;
dma->rx_chan = dma_request_chan(ourport->port.dev, "rx");
if (IS_ERR(dma->rx_chan)) {
reason = "DMA RX channel request failed";
ret = PTR_ERR(dma->rx_chan);
goto err_warn;
}
ret = dma_get_slave_caps(dma->rx_chan, &dma_caps);
if (ret < 0 ||
dma_caps.residue_granularity < DMA_RESIDUE_GRANULARITY_BURST) {
reason = "insufficient DMA RX engine capabilities";
ret = -EOPNOTSUPP;
goto err_release_rx;
}
dmaengine_slave_config(dma->rx_chan, &dma->rx_conf);
dma->tx_chan = dma_request_chan(ourport->port.dev, "tx");
if (IS_ERR(dma->tx_chan)) {
reason = "DMA TX channel request failed";
ret = PTR_ERR(dma->tx_chan);
goto err_release_rx;
}
ret = dma_get_slave_caps(dma->tx_chan, &dma_caps);
if (ret < 0 ||
dma_caps.residue_granularity < DMA_RESIDUE_GRANULARITY_BURST) {
reason = "insufficient DMA TX engine capabilities";
ret = -EOPNOTSUPP;
goto err_release_tx;
}
dmaengine_slave_config(dma->tx_chan, &dma->tx_conf);
/* RX buffer */
dma->rx_size = PAGE_SIZE;
dma->rx_buf = kmalloc(dma->rx_size, GFP_KERNEL);
if (!dma->rx_buf) {
ret = -ENOMEM;
goto err_release_tx;
}
dma->rx_addr = dma_map_single(ourport->port.dev, dma->rx_buf,
dma->rx_size, DMA_FROM_DEVICE);
if (dma_mapping_error(ourport->port.dev, dma->rx_addr)) {
reason = "DMA mapping error for RX buffer";
ret = -EIO;
goto err_free_rx;
}
/* TX buffer */
dma->tx_addr = dma_map_single(ourport->port.dev, ourport->port.state->xmit.buf,
uart_xmit_size, DMA_TO_DEVICE);
if (dma_mapping_error(ourport->port.dev, dma->tx_addr)) {
reason = "DMA mapping error for TX buffer";
ret = -EIO;
goto err_unmap_rx;
}
return 0;
err_unmap_rx:
dma_unmap_single(ourport->port.dev, dma->rx_addr, dma->rx_size,
DMA_FROM_DEVICE);
err_free_rx:
kfree(dma->rx_buf);
err_release_tx:
dma_release_channel(dma->tx_chan);
err_release_rx:
dma_release_channel(dma->rx_chan);
err_warn:
if (reason)
dev_warn(ourport->port.dev, "%s, DMA will not be used\n", reason);
return ret;
}
static void exynos_serial_release_dma(struct exynos_uart_port *p)
{
struct exynos_uart_dma *dma = p->dma;
if (dma->rx_chan) {
dmaengine_terminate_all(dma->rx_chan);
dma_unmap_single(p->port.dev, dma->rx_addr,
dma->rx_size, DMA_FROM_DEVICE);
kfree(dma->rx_buf);
dma_release_channel(dma->rx_chan);
dma->rx_chan = NULL;
}
if (dma->tx_chan) {
dmaengine_terminate_all(dma->tx_chan);
dma_unmap_single(p->port.dev, dma->tx_addr,
uart_xmit_size, DMA_TO_DEVICE);
dma_release_channel(dma->tx_chan);
dma->tx_chan = NULL;
}
}
static void exynos_serial_shutdown(struct uart_port *port)
{
struct exynos_uart_port *ourport = to_ourport(port);
if (!ourport->rx_claimed && !ourport->tx_claimed)
return;
dev_info(port->dev, "%s\n", __func__);
/* Stop the console before shutdown */
if (uart_console(port))
console_stop(port->cons);
if (ourport->tx_claimed) {
if (!exynos_serial_has_interrupt_mask(port))
free_irq(ourport->tx_irq, ourport);
ourport->tx_enabled = 0;
ourport->tx_claimed = 0;
ourport->tx_mode = 0;
}
if (ourport->rx_claimed) {
if (!exynos_serial_has_interrupt_mask(port))
free_irq(ourport->rx_irq, ourport);
ourport->rx_claimed = 0;
ourport->rx_enabled = 0;
}
/* Clear pending interrupts and mask all interrupts */
if (exynos_serial_has_interrupt_mask(port)) {
free_irq(port->irq, ourport);
wr_regl(port, S3C64XX_UINTP, 0xf);
wr_regl(port, S3C64XX_UINTM, 0xf);
}
if (ourport->dma)
exynos_serial_release_dma(ourport);
ourport->tx_in_progress = 0;
}
static int exynos_serial_startup(struct uart_port *port)
{
struct exynos_uart_port *ourport = to_ourport(port);
int ret;
pr_debug("exynos_serial_startup: port=%p (%08llx,%p)\n",
port, (unsigned long long)port->mapbase, port->membase);
ourport->wake_peer_en = 1;
ourport->wake_peer_pended = 0;
ourport->rx_enabled = 1;
ret = request_irq(ourport->rx_irq, exynos_serial_rx_chars, 0,
exynos_serial_portname(port), ourport);
if (ret != 0) {
dev_err(port->dev, "cannot get irq %d\n", ourport->rx_irq);
return ret;
}
ourport->rx_claimed = 1;
pr_debug("requesting tx irq...\n");
ourport->tx_enabled = 1;
ret = request_irq(ourport->tx_irq, exynos_serial_tx_chars, 0,
exynos_serial_portname(port), ourport);
if (ret) {
dev_err(port->dev, "cannot get irq %d\n", ourport->tx_irq);
goto err;
}
ourport->tx_claimed = 1;
pr_debug("exynos_serial_startup ok\n");
/* the port reset code should have done the correct
* register setup for the port controls */
return ret;
err:
exynos_serial_shutdown(port);
return ret;
}
static int s3c64xx_serial_startup(struct uart_port *port)
{
struct exynos_uart_port *ourport = to_ourport(port);
struct uart_state *state = port->state;
unsigned long flags;
unsigned int ufcon;
int ret;
unsigned int order;
pr_debug("s3c64xx_serial_startup: port=%p (%08llx,%p)\n",
port, (unsigned long long)port->mapbase, port->membase);
ourport->wake_peer_en = 1;
ourport->wake_peer_pended = 0;
spin_lock_irqsave(&port->lock, flags);
wr_regl(port, S3C64XX_UINTM, 0xf);
spin_unlock_irqrestore(&port->lock, flags);
if (ourport->dma) {
ret = exynos_serial_request_dma(ourport);
if (ret < 0) {
devm_kfree(port->dev, ourport->dma);
ourport->dma = NULL;
}
}
if (ourport->use_default_irq == 1)
ret = devm_request_irq(port->dev, port->irq, s3c64xx_serial_handle_irq,
IRQF_SHARED, exynos_serial_portname(port), ourport);
else
ret = request_threaded_irq(port->irq, NULL, s3c64xx_serial_handle_irq,
IRQF_ONESHOT, exynos_serial_portname(port), ourport);
if (ret) {
dev_err(port->dev, "cannot get irq %d\n", port->irq);
return ret;
}
/* determin xmit.buf size*/
order = compound_order(virt_to_page(state->xmit.buf));
if (order > 0) {
uart_xmit_size = (PAGE_SIZE << order);
dev_info(port->dev, "order: %d uart_xmit_size: %d bytes\n", order, uart_xmit_size);
}
/* For compatibility with exynos Soc's */
ourport->rx_enabled = 1;
ourport->rx_claimed = 1;
ourport->tx_enabled = 0;
ourport->tx_claimed = 1;
spin_lock_irqsave(&port->lock, flags);
ufcon = rd_regl(port, S3C2410_UFCON);
ufcon |= S3C2410_UFCON_RESETRX;
if (!uart_console(port))
ufcon |= S3C2410_UFCON_RESETTX;
wr_regl(port, S3C2410_UFCON, ufcon);
enable_rx_pio(ourport);
spin_unlock_irqrestore(&port->lock, flags);
/* Enable Rx Interrupt */
__clear_bit(S3C64XX_UINTM_RXD, portaddrl(port, S3C64XX_UINTM));
pr_debug("s3c64xx_serial_startup ok\n");
return ret;
}
/* power power management control */
static void exynos_serial_pm(struct uart_port *port, unsigned int level,
unsigned int old)
{
struct exynos_uart_port *ourport = to_ourport(port);
unsigned int umcon;
switch (level) {
case EXYNOS_UART_PORT_SUSPEND:
if (!ourport->in_band_wakeup) {
/* disable auto flow control & set nRTS for High */
umcon = rd_regl(port, S3C2410_UMCON);
umcon &= ~(S3C2410_UMCOM_AFC | S3C2410_UMCOM_RTS_LOW);
wr_regl(port, S3C2410_UMCON, umcon);
if (ourport->port.line == BLUETOOTH_UART_PORT_LINE) {
snprintf(uart_log_buf, LOG_REG_DEBUG_LEN,"[3] UMCON:0x%08x UFSTAT:0x%08x UINTP:0x%08x UCON:0x%08x UMSTAT:0x%08x",
rd_regl(port, S3C2410_UMCON), rd_regl(port, S3C2410_UFSTAT), rd_regl(port, S3C64XX_UINTP),
rd_regl(port, S3C2410_UCON), rd_regl(port, S3C2410_UMSTAT));
uart_copy_to_local_buf(2, &ourport->uart_local_buf, uart_log_buf, sizeof(uart_log_buf));
}
}
uart_clock_disable(ourport);
break;
case EXYNOS_UART_PORT_RESUME:
uart_clock_enable(ourport);
if (ourport->port.line == BLUETOOTH_UART_PORT_LINE) {
snprintf(uart_log_buf, LOG_REG_DEBUG_LEN,"[4] UMCON:0x%08x UFSTAT:0x%08x UINTP:0x%08x UCON:0x%08x UMSTAT:0x%08x",
rd_regl(port, S3C2410_UMCON), rd_regl(port, S3C2410_UFSTAT), rd_regl(port, S3C64XX_UINTP),
rd_regl(port, S3C2410_UCON), rd_regl(port, S3C2410_UMSTAT));
uart_copy_to_local_buf(2, &ourport->uart_local_buf, uart_log_buf, sizeof(uart_log_buf));
}
exynos_usi_init(port);
exynos_serial_resetport(port, exynos_port_to_cfg(port));
break;
default:
dev_err(port->dev, "exynos_serial: unknown pm %d\n", level);
}
}
/* baud rate calculation
*
* The UARTs on the S3C2410/S3C2440 can take their clocks from a number
* of different sources, including the peripheral clock ("pclk") and an
* external clock ("uclk"). The S3C2440 also adds the core clock ("fclk")
* with a programmable extra divisor.
*
* The following code goes through the clock sources, and calculates the
* baud clocks (and the resultant actual baud rates) and then tries to
* pick the closest one and select that.
*
*/
#define MAX_CLK_NAME_LENGTH 20
static unsigned int exynos_serial_getclk(struct exynos_uart_port *ourport,
unsigned int req_baud, struct clk **best_clk,
unsigned int *clk_num)
{
struct exynos_uart_info *info = ourport->info;
unsigned long rate;
unsigned int cnt, baud, quot, clk_sel, best_quot = 0;
int calc_deviation, deviation = (1 << 30) - 1;
int ret;
clk_sel = (ourport->cfg->clk_sel) ? ourport->cfg->clk_sel :
ourport->info->def_clk_sel;
for (cnt = 0; cnt < info->num_clks; cnt++) {
if (!(clk_sel & (1 << cnt)))
continue;
rate = clk_get_rate(ourport->clk);
if (ourport->src_clk_rate && rate != ourport->src_clk_rate)
{
ret = clk_set_rate(ourport->clk, ourport->src_clk_rate);
if (ret < 0)
dev_err(&ourport->pdev->dev, "UART clk set failed\n");
rate = clk_get_rate(ourport->clk);
}
dev_info(&ourport->pdev->dev, " Clock rate : %ld\n", rate);
if (!rate)
continue;
if (ourport->info->has_divslot) {
unsigned long div = rate / req_baud;
/* The UDIVSLOT register on the newer UARTs allows us to
* get a divisor adjustment of 1/16th on the baud clock.
*
* We don't keep the UDIVSLOT value (the 16ths we
* calculated by not multiplying the baud by 16) as it
* is easy enough to recalculate.
*/
quot = div / 16;
baud = rate / div;
} else {
quot = (rate + (8 * req_baud)) / (16 * req_baud);
baud = rate / (quot * 16);
}
quot--;
calc_deviation = req_baud - baud;
if (calc_deviation < 0)
calc_deviation = -calc_deviation;
if (calc_deviation < deviation) {
*best_clk = ourport->clk;
best_quot = quot;
*clk_num = cnt;
deviation = calc_deviation;
}
}
return best_quot;
}
/* udivslot_table[]
*
* This table takes the fractional value of the baud divisor and gives
* the recommended setting for the UDIVSLOT register.
*/
static u16 udivslot_table[16] = {
[0] = 0x0000,
[1] = 0x0080,
[2] = 0x0808,
[3] = 0x0888,
[4] = 0x2222,
[5] = 0x4924,
[6] = 0x4A52,
[7] = 0x54AA,
[8] = 0x5555,
[9] = 0xD555,
[10] = 0xD5D5,
[11] = 0xDDD5,
[12] = 0xDDDD,
[13] = 0xDFDD,
[14] = 0xDFDF,
[15] = 0xFFDF,
};
static void exynos_serial_set_termios(struct uart_port *port,
struct ktermios *termios,
struct ktermios *old)
{
struct s3c2410_uartcfg *cfg = exynos_port_to_cfg(port);
struct exynos_uart_port *ourport = to_ourport(port);
struct clk *clk = ERR_PTR(-EINVAL);
unsigned long flags;
unsigned int baud, quot, clk_sel = 0;
unsigned int ulcon;
unsigned int umcon;
unsigned int udivslot = 0;
unsigned int real_baud_rd, real_baud_ru = 0;
int calc_deviation_rd, calc_deviation_ru = 0;
/*
* We don't support modem control lines.
*/
termios->c_cflag &= ~(HUPCL | CMSPAR);
termios->c_cflag |= CLOCAL;
/*
* Ask the core to calculate the divisor for us.
*/
baud = uart_get_baud_rate(port, termios, old, MIN_BAUD, MAX_BAUD);
if (ourport->dbg_uart_ch && (baud == 9600))
baud = ourport->dbg_uart_baud;
if (!baud)
return;
quot = exynos_serial_getclk(ourport, baud, &clk, &clk_sel);
if (baud == 38400 && (port->flags & UPF_SPD_MASK) == UPF_SPD_CUST)
quot = port->custom_divisor;
if (IS_ERR(clk))
return;
/* setting clock for baud rate */
if (ourport->baudclk != clk) {
ourport->baudclk = clk;
ourport->baudclk_rate = clk ? clk_get_rate(clk) : 0;
}
if (ourport->info->has_divslot) {
unsigned int div = ourport->baudclk_rate / baud;
if (!div)
return;
/*
* Find udivslot of the lowest error rate
*
* udivslot cannot be round-up to 0 because quot is fixed
*/
if((div & 15) != 15) {
real_baud_rd = ourport->baudclk_rate / div;
real_baud_ru = ourport->baudclk_rate / (div + 1);
calc_deviation_rd = baud - real_baud_rd;
calc_deviation_ru = baud - real_baud_ru;
if(calc_deviation_rd < 0)
calc_deviation_rd = -calc_deviation_rd;
if(calc_deviation_ru < 0)
calc_deviation_ru = -calc_deviation_ru;
if(calc_deviation_rd > calc_deviation_ru)
div = div + 1;
}
if (cfg->has_fracval) {
udivslot = (div & 15);
pr_debug("fracval = %04x\n", udivslot);
} else {
udivslot = udivslot_table[div & 15];
pr_debug("udivslot = %04x (div %d)\n", udivslot, div & 15);
}
}
switch (termios->c_cflag & CSIZE) {
case CS5:
pr_debug("config: 5bits/char\n");
ulcon = S3C2410_LCON_CS5;
break;
case CS6:
pr_debug("config: 6bits/char\n");
ulcon = S3C2410_LCON_CS6;
break;
case CS7:
pr_debug("config: 7bits/char\n");
ulcon = S3C2410_LCON_CS7;
break;
case CS8:
default:
pr_debug("config: 8bits/char\n");
ulcon = S3C2410_LCON_CS8;
break;
}
if (ourport->dbg_uart_ch) {
switch (ourport->dbg_word_len) {
case 5:
ulcon = S3C2410_LCON_CS5;
break;
case 6:
ulcon = S3C2410_LCON_CS6;
break;
case 7:
ulcon = S3C2410_LCON_CS7;
break;
case 8:
default:
ulcon = S3C2410_LCON_CS8;
break;
}
}
/* preserve original lcon IR settings */
if (!ourport->usi_v2)
ulcon |= (unsigned int)(cfg->ulcon & S3C2410_LCON_IRM);
if (termios->c_cflag & CSTOPB)
ulcon |= S3C2410_LCON_STOPB;
if (termios->c_cflag & PARENB) {
if (termios->c_cflag & PARODD)
ulcon |= S3C2410_LCON_PODD;
else
ulcon |= S3C2410_LCON_PEVEN;
} else {
ulcon |= S3C2410_LCON_PNONE;
}
spin_lock_irqsave(&port->lock, flags);
pr_debug("setting ulcon to %08x, brddiv to %d, udivslot %08x\n",
ulcon, quot, udivslot);
wr_regl(port, S3C2410_ULCON, ulcon);
wr_regl(port, S3C2410_UBRDIV, quot);
if (ourport->info->has_divslot)
wr_regl(port, S3C2443_DIVSLOT, udivslot);
port->status &= ~UPSTAT_AUTOCTS;
umcon = rd_regl(port, S3C2410_UMCON);
if (termios->c_cflag & CRTSCTS) {
umcon |= S3C2410_UMCOM_AFC;
port->status = UPSTAT_AUTOCTS;
} else {
umcon &= ~S3C2410_UMCOM_AFC;
}
wr_regl(port, S3C2410_UMCON, umcon);
pr_debug("uart: ulcon = 0x%08x, ucon = 0x%08x, ufcon = 0x%08x\n",
rd_regl(port, S3C2410_ULCON),
rd_regl(port, S3C2410_UCON),
rd_regl(port, S3C2410_UFCON));
if (ourport->dbg_mode & UART_DBG_MODE)
print_uart_mode(port, termios, baud);
/*
* Update the per-port timeout.
*/
uart_update_timeout(port, termios->c_cflag, baud);
/*
* Which character status flags are we interested in?
*/
port->read_status_mask = S3C2410_UERSTAT_OVERRUN;
if (termios->c_iflag & INPCK)
port->read_status_mask |= S3C2410_UERSTAT_FRAME |
S3C2410_UERSTAT_PARITY;
/*
* Which character status flags should we ignore?
*/
port->ignore_status_mask = 0;
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |= S3C2410_UERSTAT_OVERRUN;
if (termios->c_iflag & IGNBRK && termios->c_iflag & IGNPAR)
port->ignore_status_mask |= S3C2410_UERSTAT_FRAME;
/*
* Ignore all characters if CREAD is not set.
*/
if ((termios->c_cflag & CREAD) == 0)
port->ignore_status_mask |= RXSTAT_DUMMY_READ;
if (ourport->port.line == BLUETOOTH_UART_PORT_LINE) {
sprintf(uart_log_buf,"baudrate:%u ULCON:0x%08x UBRDIV:0x%08x UFRAVAL:0x%08x",
baud, rd_regl(port, S3C2410_ULCON),
rd_regl(port, S3C2410_UBRDIV),
rd_regl(port, S3C2443_DIVSLOT));
uart_copy_to_local_buf(3, &ourport->uart_local_buf, uart_log_buf, sizeof(uart_log_buf));
}
spin_unlock_irqrestore(&port->lock, flags);
}
static const char *exynos_serial_type(struct uart_port *port)
{
switch (port->type) {
case PORT_S3C2410:
return "S3C2410";
case PORT_S3C2440:
return "S3C2440";
case PORT_S3C2412:
return "S3C2412";
case PORT_S3C6400:
return "S3C6400/10";
default:
return NULL;
}
}
#define MAP_SIZE (0x100)
static void exynos_serial_release_port(struct uart_port *port)
{
release_mem_region(port->mapbase, MAP_SIZE);
}
static int exynos_serial_request_port(struct uart_port *port)
{
const char *name = exynos_serial_portname(port);
return request_mem_region(port->mapbase, MAP_SIZE, name) ? 0 : -EBUSY;
}
static void exynos_serial_config_port(struct uart_port *port, int flags)
{
struct exynos_uart_info *info = exynos_port_to_info(port);
if (flags & UART_CONFIG_TYPE &&
exynos_serial_request_port(port) == 0)
port->type = info->type;
}
/*
* verify the new serial_struct (for TIOCSSERIAL).
*/
static int
exynos_serial_verify_port(struct uart_port *port, struct serial_struct *ser)
{
struct exynos_uart_info *info = exynos_port_to_info(port);
if (ser->type != PORT_UNKNOWN && ser->type != info->type)
return -EINVAL;
return 0;
}
static struct console exynos_serial_console;
#define EXYNOS_SERIAL_CONSOLE &exynos_serial_console
#if defined(CONFIG_CONSOLE_POLL)
static int exynos_serial_get_poll_char(struct uart_port *port);
static void exynos_serial_put_poll_char(struct uart_port *port,
unsigned char c);
#endif
static struct uart_ops exynos_serial_ops = {
.pm = exynos_serial_pm,
.tx_empty = exynos_serial_tx_empty,
.get_mctrl = exynos_serial_get_mctrl,
.set_mctrl = exynos_serial_set_mctrl,
.stop_tx = exynos_serial_stop_tx,
.start_tx = exynos_serial_start_tx,
.throttle = exynos_serial_throttle,
.unthrottle = exynos_serial_unthrottle,
.stop_rx = exynos_serial_stop_rx,
.break_ctl = exynos_serial_break_ctl,
.startup = exynos_serial_startup,
.shutdown = exynos_serial_shutdown,
.set_termios = exynos_serial_set_termios,
.type = exynos_serial_type,
.release_port = exynos_serial_release_port,
.request_port = exynos_serial_request_port,
.config_port = exynos_serial_config_port,
.verify_port = exynos_serial_verify_port,
#if defined(CONFIG_CONSOLE_POLL)
.poll_get_char = exynos_serial_get_poll_char,
.poll_put_char = exynos_serial_put_poll_char,
#endif
};
static struct uart_driver exynos_uart_drv = {
.owner = THIS_MODULE,
.driver_name = "s3c2410_serial",
.nr = CONFIG_SERIAL_EXYNOS_UARTS,
.cons = EXYNOS_SERIAL_CONSOLE,
.dev_name = EXYNOS_SERIAL_NAME,
.major = EXYNOS_SERIAL_MAJOR,
.minor = EXYNOS_SERIAL_MINOR,
};
#define __PORT_LOCK_UNLOCKED(i) \
__SPIN_LOCK_UNLOCKED(exynos_serial_ports[i].port.lock)
static struct exynos_uart_port
exynos_serial_ports[CONFIG_SERIAL_EXYNOS_UARTS] = {
[0] = {
.port = {
.lock = __PORT_LOCK_UNLOCKED(0),
.iotype = UPIO_MEM,
.uartclk = 0,
.fifosize = 16,
.ops = &exynos_serial_ops,
.flags = UPF_BOOT_AUTOCONF,
.line = 0,
}
},
[1] = {
.port = {
.lock = __PORT_LOCK_UNLOCKED(1),
.iotype = UPIO_MEM,
.uartclk = 0,
.fifosize = 16,
.ops = &exynos_serial_ops,
.flags = UPF_BOOT_AUTOCONF,
.line = 1,
}
},
#if CONFIG_SERIAL_EXYNOS_UARTS > 2
[2] = {
.port = {
.lock = __PORT_LOCK_UNLOCKED(2),
.iotype = UPIO_MEM,
.uartclk = 0,
.fifosize = 16,
.ops = &exynos_serial_ops,
.flags = UPF_BOOT_AUTOCONF,
.line = 2,
}
},
#endif
#if CONFIG_SERIAL_EXYNOS_UARTS > 3
[3] = {
.port = {
.lock = __PORT_LOCK_UNLOCKED(3),
.iotype = UPIO_MEM,
.uartclk = 0,
.fifosize = 16,
.ops = &exynos_serial_ops,
.flags = UPF_BOOT_AUTOCONF,
.line = 3,
}
},
#endif
#if CONFIG_SERIAL_EXYNOS_UARTS > 4
[4] = {
.port = {
.lock = __PORT_LOCK_UNLOCKED(4),
.iotype = UPIO_MEM,
.uartclk = 0,
.fifosize = 16,
.ops = &exynos_serial_ops,
.flags = UPF_BOOT_AUTOCONF,
.line = 4,
}
},
#endif
#if CONFIG_SERIAL_EXYNOS_UARTS > 5
[5] = {
.port = {
.lock = __PORT_LOCK_UNLOCKED(5),
.iotype = UPIO_MEM,
.uartclk = 0,
.fifosize = 16,
.ops = &exynos_serial_ops,
.flags = UPF_BOOT_AUTOCONF,
.line = 5,
}
},
#endif
};
static struct exynos_uart_port *exynos_serial_default_port(int port_index)
{
exynos_serial_ports[port_index].port.lock = __PORT_LOCK_UNLOCKED(port_index);
exynos_serial_ports[port_index].port.iotype = UPIO_MEM;
exynos_serial_ports[port_index].port.uartclk = 0;
exynos_serial_ports[port_index].port.fifosize = 0;
exynos_serial_ports[port_index].port.ops =
&exynos_serial_ops;
exynos_serial_ports[port_index].port.flags = UPF_BOOT_AUTOCONF;
exynos_serial_ports[port_index].port.line = port_index;
return &exynos_serial_ports[port_index];
}
#undef __PORT_LOCK_UNLOCKED
static void exynos_usi_init(struct uart_port *port)
{
struct exynos_uart_port *ourport = to_ourport(port);
/* USI_RESET is active High signal.
* Reset value of USI_RESET is 'h1 to drive stable value to PAD.
* Due to this feature, the USI_RESET must be cleared (set as '0')
* before transaction starts.
*/
if (!ourport->dbg_uart_ch) {
wr_regl(port, USI_CON, USI_SET_RESET);
udelay(1);
}
wr_regl(port, USI_CON, USI_RESET);
udelay(1);
/* set the HWACG option bit in case of UART Rx mode.
* CLKREQ_ON = 1, CLKSTOP_ON = 0 (set USI_OPTION[2:1] = 2'h1)
*/
wr_regl(port, USI_OPTION, USI_HWACG_CLKREQ_ON);
}
static void exynos_usi_stop(struct uart_port *port)
{
/* when USI CLKSTOP_ON is set high, this makes the
* Q-ch state enter into STOP state by driving both the
* IP_CLKREQ and IP_BUSACTREQ as low
*/
wr_regl(port, USI_OPTION, USI_HWACG_CLKSTOP_ON);
}
/* exynos_serial_resetport
*
* reset the fifos and other the settings.
*/
static void exynos_serial_resetport(struct uart_port *port,
struct s3c2410_uartcfg *cfg)
{
struct exynos_uart_info *info = exynos_port_to_info(port);
struct exynos_uart_port *ourport = to_ourport(port);
unsigned long ucon = rd_regl(port, S3C2410_UCON);
unsigned long umcon = rd_regl(port, S3C2410_UMCON);
unsigned int ucon_mask;
unsigned int ufcon;
ucon_mask = info->clksel_mask;
if (info->type == PORT_S3C2440)
ucon_mask |= S3C2440_UCON0_DIVMASK;
ucon &= ucon_mask;
if (ourport->dbg_mode & UART_LOOPBACK_MODE) {
dev_err(port->dev, "Change Loopback mode!\n");
ucon |= S3C2443_UCON_LOOPBACK;
}
/* Set rts trigger level */
umcon &= ~S5PV210_UMCON_RTSTRIG32;
if (ourport->rts_trig_level && info->rts_trig_shift)
umcon |= ourport->rts_trig_level << info->rts_trig_shift;
wr_regl(port, S3C2410_UMCON, umcon);
/* To prevent unexpected Interrupt before enabling the channel */
wr_regl(port, S3C64XX_UINTM, 0xf);
if (ourport->rx_trig_level >= 0) {
ufcon = cfg->ufcon;
ufcon &= ~S5PV210_UFCON_RXTRIG256;
ufcon |= ourport->rx_trig_level << S5PV210_UFCON_RXTRIG_SHIFT;
wr_regl(port, S3C2410_UFCON, ufcon);
} else {
/* reset both fifos */
wr_regl(port, S3C2410_UFCON, cfg->ufcon);
}
/* some delay is required after fifo reset */
udelay(1);
wr_regl(port, S3C2410_UCON, ucon | cfg->ucon);
}
/* exynos_serial_init_port
*
* initialise a single serial port from the platform device given
*/
static int exynos_serial_init_port(struct exynos_uart_port *ourport,
struct platform_device *platdev)
{
struct uart_port *port = &ourport->port;
struct s3c2410_uartcfg *cfg = ourport->cfg;
struct resource *res;
char clkname[MAX_CLK_NAME_LENGTH];
int ret;
pr_debug("exynos_serial_init_port: port=%p, platdev=%p\n", port, platdev);
if (platdev == NULL)
return -ENODEV;
if (port->mapbase != 0)
return -EINVAL;
/* setup info for port */
port->dev = &platdev->dev;
ourport->pdev = platdev;
/* Startup sequence is different for s3c64xx and higher SoC's */
if (exynos_serial_has_interrupt_mask(port))
exynos_serial_ops.startup = s3c64xx_serial_startup;
port->uartclk = 1;
if (cfg->uart_flags & UPF_CONS_FLOW) {
pr_debug("exynos_serial_init_port: enabling flow control\n");
port->flags |= UPF_CONS_FLOW;
}
/* sort our the physical and virtual addresses for each UART */
res = platform_get_resource(platdev, IORESOURCE_MEM, 0);
if (res == NULL) {
dev_err(port->dev, "failed to find memory resource for uart\n");
return -EINVAL;
}
pr_debug("resource %pR)\n", res);
port->membase = devm_ioremap(port->dev, res->start, resource_size(res));
if (!port->membase) {
dev_err(port->dev, "failed to remap controller address\n");
return -EBUSY;
}
port->mapbase = res->start;
ret = platform_get_irq(platdev, 0);
if (ret < 0)
port->irq = 0;
else {
port->irq = ret;
ourport->rx_irq = ret;
ourport->tx_irq = ret + 1;
}
ret = platform_get_irq(platdev, 1);
if (ret > 0)
ourport->tx_irq = ret;
/*
* DMA is currently supported only on DT platforms, if DMA properties
* are specified.
*/
if (platdev->dev.of_node && of_find_property(platdev->dev.of_node,
"dmas", NULL)) {
ourport->dma = devm_kzalloc(port->dev,
sizeof(*ourport->dma),
GFP_KERNEL);
if (!ourport->dma) {
return -ENOMEM;
}
spin_lock_init(&ourport->dma->rx_lock);
spin_lock_init(&ourport->dma->tx_lock);
dev_info(port->dev, "DMA ENABLED\n");
}
if (of_get_property(platdev->dev.of_node,
"samsung,separate-uart-clk", NULL))
ourport->check_separated_clk = 1;
else
ourport->check_separated_clk = 0;
if (of_property_read_u32(platdev->dev.of_node, "samsung,source-clock-rate", &ourport->src_clk_rate)){
dev_err(&platdev->dev, "No explicit src-clk. Use default src-clk\n");
ourport->src_clk_rate = DEFAULT_SOURCE_CLK;
}
snprintf(clkname, sizeof(clkname), "ipclk_uart%d", ourport->port.line);
ourport->clk = devm_clk_get(&platdev->dev, clkname);
if (IS_ERR(ourport->clk)) {
pr_err("%s: Controller clock not found\n",
dev_name(&platdev->dev));
return PTR_ERR(ourport->clk);
}
if (ourport->check_separated_clk) {
snprintf(clkname, sizeof(clkname), "gate_uart_clk%d", ourport->port.line);
ourport->separated_clk = devm_clk_get(&platdev->dev, clkname);
if (IS_ERR(ourport->separated_clk)) {
pr_err("%s: Controller clock not found\n",
dev_name(&platdev->dev));
return PTR_ERR(ourport->separated_clk);
}
ret = clk_prepare_enable(ourport->separated_clk);
if (ret) {
pr_err("uart: clock failed to prepare+enable: %d\n", ret);
return ret;
}
}
ret = clk_prepare_enable(ourport->clk);
if (ret) {
pr_err("uart: clock failed to prepare+enable: %d\n", ret);
return ret;
}
exynos_usi_init(port);
/* Keep all interrupts masked and cleared */
if (exynos_serial_has_interrupt_mask(port)) {
wr_regl(port, S3C64XX_UINTM, 0xf);
wr_regl(port, S3C64XX_UINTP, 0xf);
wr_regl(port, S3C64XX_UINTSP, 0xf);
}
pr_debug("port: map=%pa, mem=%p, irq=%d (%d,%d), clock=%u\n",
&port->mapbase, port->membase, port->irq,
ourport->rx_irq, ourport->tx_irq, port->uartclk);
/* reset the fifos (and setup the uart) */
exynos_serial_resetport(port, cfg);
return 0;
}
static int exynos_serial_pm_notifier(struct notifier_block *notifier,
unsigned long pm_event, void *v)
{
/*
* We should control re-init / exit for all CPUs
* Originally all CPUs are controlled by cpuhp framework.
* But CPU0 is not controlled by cpuhp framework in exynos BSP.
* So mainline code of perf(kernel/cpu.c) for CPU0 is not called by cpuhp framework.
* As a result, it's OK to not control CPU0.
* CPU0 will be controlled by CPU_PM notifier call.
*/
struct exynos_uart_port *ourport;
list_for_each_entry(ourport, &drvdata_list, node) {
if (ourport->port.line != BLUETOOTH_UART_PORT_LINE)
continue;
switch (pm_event) {
case PM_SUSPEND_PREPARE:
dev_info(&ourport->pdev->dev, "SUSPEND_PREPARE : Turn off BT wake_peer\n");
ourport->wake_peer_en = 0;
break;
case PM_POST_SUSPEND:
dev_info(&ourport->pdev->dev, "PM_POST_SUSPEND : Turn on BT wake_peer\n");
ourport->wake_peer_en = 1;
if(ourport->wake_peer_pended) {
ourport->wake_peer_pended = 0;
if (ourport->port.line == BLUETOOTH_UART_PORT_LINE &&
s3c2410_serial_wake_peer[BLUETOOTH_UART_PORT_LINE])
s3c2410_serial_wake_peer[BLUETOOTH_UART_PORT_LINE](&ourport->port);
}
break;
}
}
return NOTIFY_OK;
}
static struct notifier_block exynos_serial_nb = {
.notifier_call = exynos_serial_pm_notifier,
};
/* Device driver serial port probe */
static const struct of_device_id exynos_uart_dt_match[];
static int probe_index;
static inline struct exynos_serial_drv_data *exynos_get_driver_data(
struct platform_device *pdev)
{
#ifdef CONFIG_OF
if (pdev->dev.of_node) {
const struct of_device_id *match;
match = of_match_node(exynos_uart_dt_match, pdev->dev.of_node);
return (struct exynos_serial_drv_data *)match->data;
}
#endif
return (struct exynos_serial_drv_data *)
platform_get_device_id(pdev)->driver_data;
}
static void exynos_serial_rx_fifo_wait(struct exynos_uart_port *ourport)
{
struct uart_port *port = &ourport->port;
unsigned int fifo_stat;
unsigned long wait_time;
unsigned int fifo_count;
fifo_count = 0;
fifo_stat = rd_regl(port, S3C2410_UFSTAT);
fifo_count = exynos_serial_rx_fifocnt(ourport, fifo_stat);
if (fifo_count) {
__clear_bit(S3C64XX_UINTM_RXD, portaddrl(port, S3C64XX_UINTM));
ourport->rx_enabled = 1;
wait_time = jiffies + HZ;
do {
port = &ourport->port;
fifo_stat = rd_regl(port, S3C2410_UFSTAT);
cpu_relax();
} while (exynos_serial_rx_fifocnt(ourport, fifo_stat) && time_before(jiffies, wait_time));
}
if (ourport->rx_enabled)
exynos_serial_stop_rx(port);
}
void exynos_serial_fifo_wait(void)
{
struct exynos_uart_port *ourport;
struct uart_port *port;
unsigned int fifo_stat;
unsigned long wait_time;
list_for_each_entry(ourport, &drvdata_list, node) {
wait_time = jiffies + HZ / 4;
do {
port = &ourport->port;
fifo_stat = rd_regl(port, S3C2410_UFSTAT);
cpu_relax();
} while (exynos_serial_tx_fifocnt(ourport, fifo_stat)
&& time_before(jiffies, wait_time));
}
}
EXPORT_SYMBOL_GPL(exynos_serial_fifo_wait);
#define PT_L(x) x ? "BT" : "UART"
static void exynos_print_reg_status(struct exynos_uart_port *ourport)
{
struct uart_port *port = &ourport->port;
unsigned int ulcon = rd_regl(port, S3C2410_ULCON);
unsigned int ucon = rd_regl(port, S3C2410_UCON);
unsigned int ufcon = rd_regl(port, S3C2410_UFCON);
unsigned int umcon = rd_regl(port, S3C2410_UMCON);
unsigned int utrstat = rd_regl(port, S3C2410_UTRSTAT);
unsigned int ufstat = rd_regl(port, S3C2410_UFSTAT);
unsigned int umstat = rd_regl(port, S3C2410_UMSTAT);
unsigned int uerstat = rd_regl(port, S3C2410_UERSTAT);
int tx_fifo_full = ufstat & S5PV210_UFSTAT_TXFULL;
int tx_fifo_count = exynos_serial_tx_fifocnt(ourport, ufstat);
int rx_fifo_full = ufstat & S5PV210_UFSTAT_RXFULL;
int rx_fifo_count = exynos_serial_rx_fifocnt(ourport, ufstat);
pr_err("[%s]: ulcon = 0x%08x, ucon = 0x%08x, ufcon = 0x%08x\n, umcon = 0x%08x\n", PT_L(port->line), ulcon, ucon, ufcon, umcon);
pr_err("[%s]: utrstat = 0x%08x, ufstat = 0x%08x, umstat = 0x%08x\n", PT_L(port->line), utrstat, ufstat, umstat);
pr_err("[%s]: uerstat = 0x%08x\n", PT_L(port->line), uerstat);
pr_err("[%s]: tx_fifo_full = %d, tx_fifo_count = %d\n", PT_L(port->line), tx_fifo_full, tx_fifo_count);
pr_err("[%s]: rx_fifo_full = %d, rx_fifo_count = %d\n", PT_L(port->line), rx_fifo_full, rx_fifo_count);
}
#ifdef BT_UART_TRACE
static ssize_t exynos_serial_bt_log(struct file *file, char __user *userbuf, size_t bytes, loff_t *off)
{
int ret;
struct exynos_uart_port *ourport = &exynos_serial_ports[BLUETOOTH_UART_PORT_LINE];
static int copied_bytes;
int offset;
if (copied_bytes >= LOG_BUFFER_SIZE) {
struct uart_port *port;
port = &ourport->port;
copied_bytes = 0;
if (port && port->state->pm_state == UART_PM_STATE_ON)
exynos_print_reg_status(ourport);
return 0;
}
offset = copied_bytes;
if (copied_bytes + bytes < LOG_BUFFER_SIZE) {
ret = copy_to_user(userbuf, ourport->uart_local_buf.buffer + offset, bytes);
if (ret) {
pr_err("Failed to exynos_serial_bt_log : %d\n", (int)ret);
return ret;
}
copied_bytes += bytes;
return bytes;
} else {
int byte_to_read = LOG_BUFFER_SIZE-copied_bytes;
ret = copy_to_user(userbuf, ourport->uart_local_buf.buffer + offset, byte_to_read);
if (ret) {
pr_err("Failed to exynos_serial_bt_log : %d\n", (int)ret);
return ret;
}
copied_bytes += byte_to_read;
return byte_to_read;
}
return 0;
}
static const struct proc_ops proc_fops_btlog = {
.proc_read = exynos_serial_bt_log,
};
#endif
#if defined(SERIAL_UART_TRACE)
static ssize_t exynos_serial_uart_log(struct file *file, char __user *userbuf, size_t bytes, loff_t *off)
{
int ret;
struct exynos_uart_port *ourport = &exynos_serial_ports[SERIAL_UART_PORT_LINE];
static int copied_bytes;
int offset;
if (copied_bytes >= LOG_BUFFER_SIZE) {
struct uart_port *port;
port = &ourport->port;
copied_bytes = 0;
if (port && port->state->pm_state == UART_PM_STATE_ON)
exynos_print_reg_status(ourport);
return 0;
}
offset = copied_bytes;
if (copied_bytes + bytes < LOG_BUFFER_SIZE) {
ret = copy_to_user(userbuf, ourport->uart_local_buf.buffer + offset, bytes);
if (ret) {
pr_err("Failed to exynos_serial_serial_log : %d\n", (int)ret);
return ret;
}
copied_bytes += bytes;
return bytes;
} else {
int byte_to_read = LOG_BUFFER_SIZE-copied_bytes;
ret = copy_to_user(userbuf, ourport->uart_local_buf.buffer + offset, byte_to_read);
if (ret) {
pr_err("Failed to exynos_serial_log : %d\n", (int)ret);
return ret;
}
copied_bytes += byte_to_read;
return byte_to_read;
}
return 0;
}
static const struct proc_ops proc_fops_serial_log = {
.proc_read = exynos_serial_uart_log,
};
#endif
#if IS_ENABLED(CONFIG_EXYNOS_CPUPM)
static int exynos_serial_notifier(struct notifier_block *self,
unsigned long cmd, void *v)
{
struct exynos_uart_port *ourport;
struct uart_port *port;
unsigned long flags;
unsigned int umcon;
switch (cmd) {
case DSUPD_ENTER:
case SICD_ENTER:
list_for_each_entry(ourport, &drvdata_list, node) {
if (ourport->port.line == CONFIG_S3C_LOWLEVEL_UART_PORT)
continue;
port = &ourport->port;
if (port->state->pm_state == UART_PM_STATE_OFF)
continue;
spin_lock_irqsave(&port->lock, flags);
/* disable auto flow control & set nRTS for High */
umcon = rd_regl(port, S3C2410_UMCON);
umcon &= ~(S3C2410_UMCOM_AFC | S3C2410_UMCOM_RTS_LOW);
wr_regl(port, S3C2410_UMCON, umcon);
spin_unlock_irqrestore(&port->lock, flags);
if (ourport->rts_control)
change_uart_gpio(RTS_PINCTRL, ourport);
}
exynos_serial_fifo_wait();
break;
case DSUPD_EXIT:
case SICD_EXIT:
list_for_each_entry(ourport, &drvdata_list, node) {
if (ourport->port.line == CONFIG_S3C_LOWLEVEL_UART_PORT)
continue;
port = &ourport->port;
if (port->state->pm_state == UART_PM_STATE_OFF)
continue;
spin_lock_irqsave(&port->lock, flags);
/* enable auto flow control */
umcon = rd_regl(port, S3C2410_UMCON);
umcon |= S3C2410_UMCOM_AFC;
wr_regl(port, S3C2410_UMCON, umcon);
spin_unlock_irqrestore(&port->lock, flags);
if (ourport->rts_control)
change_uart_gpio(DEFAULT_PINCTRL, ourport);
}
break;
default:
break;
}
return NOTIFY_DONE;
}
static struct notifier_block exynos_serial_notifier_block = {
.notifier_call = exynos_serial_notifier,
};
#endif
static int exynos_serial_reboot_notifier(struct notifier_block *nb, unsigned long val, void *v)
{
struct exynos_uart_port *ourport;
pr_info("%s\n", __func__);
list_for_each_entry(ourport, &drvdata_list, node)
exynos_serial_shutdown(&ourport->port);
return NOTIFY_OK;
}
static struct notifier_block exynos_serial_reboot_notifier_block = {
.notifier_call = exynos_serial_reboot_notifier,
};
static int exynos_serial_probe(struct platform_device *pdev)
{
struct exynos_uart_port *ourport;
struct device *dev = &pdev->dev;
int ret, fifo_size;
int port_index = probe_index;
int rts_trig_level;
int rx_trig_level;
int prop = 0;
dev_info(dev, "exynos_serial_probe\n");
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(36));
if (ret)
return ret;
if (pdev->dev.of_node) {
ret = of_alias_get_id(pdev->dev.of_node, "uart");
if (ret < 0) {
dev_err(&pdev->dev, "UART aliases are not defined(%d).\n",
ret);
} else {
port_index = ret;
}
}
ourport = &exynos_serial_ports[port_index];
if (of_property_read_u32(dev->of_node, "samsung,usi-offset", &ourport->usi_offset)) {
dev_warn(dev, "usi offset is not specified\n");
}
ourport->usi_reg = syscon_regmap_lookup_by_phandle(dev->of_node,
"samsung,usi-phandle");
if (IS_ERR(ourport->usi_reg)) {
dev_info(dev, "no lookup for usi-phandle.\n");
} else {
u32 val;
regmap_update_bits(ourport->usi_reg, ourport->usi_offset,
USI_SW_CONF_MASK, USI_UART_SW_CONF);
regmap_read(ourport->usi_reg, ourport->usi_offset, &val);
dev_info(&pdev->dev, "set usi mode - 0x%x\n", val);
}
if (ourport->port.line != port_index)
ourport = exynos_serial_default_port(port_index);
if (ourport->port.line >= CONFIG_SERIAL_EXYNOS_UARTS) {
dev_err(&pdev->dev,
"the port %d exceeded CONFIG_SERIAL_EXYNOS_UARTS(%d)\n"
, ourport->port.line, CONFIG_SERIAL_EXYNOS_UARTS);
return -EINVAL;
}
ourport->drv_data = exynos_get_driver_data(pdev);
if (!ourport->drv_data) {
dev_err(&pdev->dev, "could not find driver data\n");
return -ENODEV;
}
ourport->baudclk = ERR_PTR(-EINVAL);
ourport->info = ourport->drv_data->info;
ourport->cfg = (dev_get_platdata(&pdev->dev)) ?
dev_get_platdata(&pdev->dev) :
ourport->drv_data->def_cfg;
if (of_property_read_u32(dev->of_node, "reg-io-width", &prop) == 0) {
switch (prop) {
case 1:
ourport->port.iotype = UPIO_MEM;
break;
case 4:
ourport->port.iotype = UPIO_MEM32;
break;
default:
dev_warn(&pdev->dev, "unsupported reg-io-width (%d)\n",
prop);
return -EINVAL;
}
}
ourport->port.fifosize = (ourport->info->fifosize) ?
ourport->info->fifosize :
ourport->drv_data->fifosize[port_index];
if (of_get_property(pdev->dev.of_node, "samsung,uart-panic-log", NULL))
ourport->uart_panic_log = 1;
else
ourport->uart_panic_log = 0;
if (ourport->uart_panic_log) {
atomic_notifier_chain_register(&panic_notifier_list, &exynos_uart_panic_block);
panic_port = ourport;
}
if (of_get_property(pdev->dev.of_node, "samsung,usi-serial-v2", NULL))
ourport->usi_v2 = 1;
else
ourport->usi_v2 = 0;
if (of_get_property(pdev->dev.of_node, "samsung,dbg-uart-ch", NULL))
ourport->dbg_uart_ch = 1;
else
ourport->dbg_uart_ch = 0;
if (ourport->dbg_uart_ch == 1) {
if (of_property_read_u32(pdev->dev.of_node, "samsung,dbg-uart-baud", &ourport->dbg_uart_baud)) {
ourport->dbg_uart_baud = 115200;
dev_err(&pdev->dev, "No DBG baud rate value. Use 115200 Baud rate\n");
}
if (of_property_read_u32(pdev->dev.of_node, "samsung,dbg-word-len", &ourport->dbg_word_len)) {
ourport->dbg_word_len = 8;
dev_err(&pdev->dev, "No DBG word length value. Use 8 word length\n");
}
}
if (of_get_property(pdev->dev.of_node, "samsung,rts-gpio-control", NULL)) {
ourport->rts_control = 1;
ourport->default_uart_pinctrl = devm_pinctrl_get(&pdev->dev);
if (IS_ERR(ourport->default_uart_pinctrl))
dev_err(&pdev->dev, "Can't get uart pinctrl!!!\n");
else {
ourport->uart_pinctrl_rts = pinctrl_lookup_state(ourport->default_uart_pinctrl,
"rts");
if (IS_ERR(ourport->uart_pinctrl_rts))
dev_err(&pdev->dev, "Can't get RTS pinstate!!!\n");
ourport->uart_pinctrl_tx_dat = pinctrl_lookup_state(ourport->default_uart_pinctrl,
"tx_dat");
ourport->uart_pinctrl_default = pinctrl_lookup_state(ourport->default_uart_pinctrl,
"default");
if (IS_ERR(ourport->uart_pinctrl_default))
dev_err(&pdev->dev, "Can't get Default pinstate!!!\n");
}
}
if (!of_property_read_u32(pdev->dev.of_node, "samsung,rx-trig-level",
&rx_trig_level))
ourport->rx_trig_level = rx_trig_level & 0x7;
else
ourport->rx_trig_level = -1;
if (!of_property_read_u32(pdev->dev.of_node, "samsung,rts-trig-level",
&rts_trig_level)) {
ourport->rts_trig_level = rts_trig_level;
}
if (!of_property_read_u32(pdev->dev.of_node, "samsung,fifo-size",
&fifo_size)) {
ourport->port.fifosize = fifo_size;
ourport->info->fifosize = fifo_size;
} else {
dev_err(&pdev->dev,
"Please add FIFO size in device tree!(UART%d)\n", port_index);
return -EINVAL;
}
/*
* DMA transfers must be aligned at least to cache line size,
* so find minimal transfer size suitable for DMA mode
*/
ourport->min_dma_size = max_t(int, ourport->port.fifosize,
dma_get_cache_alignment());
probe_index++;
pr_debug("%s: initialising port %p...\n", __func__, ourport);
#ifdef CONFIG_ARM_EXYNOS_DEVFREQ
if (of_property_read_u32(pdev->dev.of_node, "mif_qos_val",
&ourport->mif_qos_val))
ourport->mif_qos_val = 0;
if (of_property_read_u32(pdev->dev.of_node, "cpu_qos_val",
&ourport->cpu_qos_val))
ourport->cpu_qos_val = 0;
if (of_property_read_u32(pdev->dev.of_node, "irq_affinity",
&ourport->uart_irq_affinity))
ourport->uart_irq_affinity = 0;
if (of_property_read_u64(pdev->dev.of_node, "qos_timeout",
(u64 *)&ourport->qos_timeout))
ourport->qos_timeout = 0;
if ((ourport->mif_qos_val || ourport->cpu_qos_val)
&& ourport->qos_timeout) {
INIT_DELAYED_WORK(&ourport->qos_work,
s3c64xx_serial_qos_func);
/* request pm qos */
if (ourport->mif_qos_val)
pm_qos_add_request(&ourport->exynos_uart_mif_qos,
PM_QOS_BUS_THROUGHPUT, 0);
if (ourport->cpu_qos_val)
pm_qos_add_request(&ourport->exynos_uart_cpu_qos,
PM_QOS_CLUSTER1_FREQ_MIN, 0);
}
#endif
if (of_get_property(pdev->dev.of_node, "samsung,in-band-wakeup", NULL))
ourport->in_band_wakeup = 1;
else
ourport->in_band_wakeup = 0;
if (of_get_property(pdev->dev.of_node, "samsung,uart-logging", NULL))
ourport->uart_logging = 1;
else
ourport->uart_logging = 0;
if (of_find_property(pdev->dev.of_node, "samsung,use-default-irq", NULL))
ourport->use_default_irq =1;
else
ourport->use_default_irq =0;
ret = exynos_serial_init_port(ourport, pdev);
if (ret < 0)
return ret;
if (!exynos_uart_drv.state) {
ret = uart_register_driver(&exynos_uart_drv);
if (ret < 0) {
pr_err("Failed to register Samsung UART driver\n");
return ret;
}
}
if (ourport->uart_logging == 1) {
/* Allocate memory for UART logging */
ourport->uart_local_buf.buffer = kzalloc(LOG_BUFFER_SIZE, GFP_KERNEL);
if (!ourport->uart_local_buf.buffer)
return -ENOMEM;
ourport->uart_local_buf.size = LOG_BUFFER_SIZE;
ourport->uart_local_buf.index = 0;
}
pr_debug("%s: adding port\n", __func__);
uart_add_one_port(&exynos_uart_drv, &ourport->port);
platform_set_drvdata(pdev, &ourport->port);
/*
* Deactivate the clock enabled in exynos_serial_init_port here,
* so that a potential re-enablement through the pm-callback overlaps
* and keeps the clock enabled in this case.
*/
uart_clock_disable(ourport);
uart_xmit_size = PAGE_SIZE;
list_add_tail(&ourport->node, &drvdata_list);
ret = device_create_file(&pdev->dev, &dev_attr_uart_dbg);
if (ret < 0)
dev_err(&pdev->dev, "failed to create sysfs file.\n");
ret = device_create_file(&pdev->dev, &dev_attr_error_cnt);
if (ret < 0)
dev_err(&pdev->dev, "failed to create sysfs file.\n");
ourport->dbg_mode = 0;
if (ourport->uart_logging == 1) {
#ifdef BT_UART_TRACE
if (port_index == BLUETOOTH_UART_PORT_LINE) {
struct proc_dir_entry *ent;
bluetooth_dir = proc_mkdir("bluetooth", NULL);
if (bluetooth_dir == NULL) {
pr_err("Unable to create /proc/bluetooth directory\n");
return -ENOMEM;
}
bt_log_dir = proc_mkdir("uart", bluetooth_dir);
if (bt_log_dir == NULL) {
pr_err("Unable to create /proc/%s directory\n", PROC_DIR);
return -ENOMEM;
}
ent = proc_create("log", 0440, bt_log_dir, &proc_fops_btlog);
if (ent == NULL) {
pr_err("Unable to create /proc/%s/log entry\n", PROC_DIR);
return -ENOMEM;
}
}
#endif
#ifdef SERIAL_UART_TRACE
if (port_index == SERIAL_UART_PORT_LINE) {
struct proc_dir_entry *uent;
serial_dir = proc_mkdir("serial", NULL);
if (serial_dir == NULL) {
pr_err("Unable to create /proc/serial directory\n");
return -ENOMEM;
}
serial_log_dir = proc_mkdir("uart", serial_dir);
if (serial_log_dir == NULL) {
pr_err("Unable to create /proc/%s directory\n", PROC_SERIAL_DIR);
return -ENOMEM;
}
uent = proc_create("log", 0444, serial_log_dir, &proc_fops_serial_log);
if (uent == NULL) {
pr_err("Unable to create /proc/%s/log entry\n", PROC_SERIAL_DIR);
return -ENOMEM;
}
}
#endif
}
return 0;
}
static void exynos_serial_platform_shutdown(struct platform_device *pdev)
{
struct uart_port *port = platform_get_drvdata(pdev);
dev_info(&pdev->dev, "%s\n", __func__);
exynos_serial_shutdown(port);
}
static int exynos_serial_remove(struct platform_device *dev)
{
struct uart_port *port = exynos_dev_to_port(&dev->dev);
struct exynos_uart_port *ourport = to_ourport(port);
if (port)
dev_info(port->dev, "%s\n", __func__);
#ifdef CONFIG_PM_DEVFREQ
// if (ourport->mif_qos_val && ourport->qos_timeout)
// pm_qos_remove_request(&ourport->exynos_uart_mif_qos);
//
// if (ourport->cpu_qos_val && ourport->qos_timeout)
// pm_qos_remove_request(&ourport->exynos_uart_cpu_qos);
#endif
if (port) {
device_remove_file(&dev->dev, &dev_attr_error_cnt);
if (ourport->uart_logging == 1)
kfree(ourport->uart_local_buf.buffer);
uart_remove_one_port(&exynos_uart_drv, port);
}
uart_unregister_driver(&exynos_uart_drv);
return 0;
}
/* UART power management code */
#ifdef CONFIG_PM_SLEEP
static int exynos_serial_suspend(struct device *dev)
{
struct uart_port *port = exynos_dev_to_port(dev);
struct exynos_uart_port *ourport = to_ourport(port);
unsigned int ucon;
dev_info(dev, "%s\n", __func__);
if (port) {
/*
* If rts line must be protected while suspending
* we change the gpio pad as output high
*/
if (ourport->rts_control)
change_uart_gpio(RTS_PINCTRL, ourport);
udelay(300);//delay for sfr update
exynos_serial_rx_fifo_wait(ourport);
uart_suspend_port(&exynos_uart_drv, port);
if (!ourport->dbg_uart_ch || console_suspend_enabled) {
uart_clock_enable(ourport);
/* disable Tx, Rx mode bit for suspend in case of HWACG */
ucon = rd_regl(port, S3C2410_UCON);
ucon &= ~(S3C2410_UCON_RXIRQMODE | S3C2410_UCON_TXIRQMODE);
wr_regl(port, S3C2410_UCON, ucon);
exynos_usi_stop(port);
uart_clock_disable(ourport);
ourport->rx_enabled = 0;
ourport->tx_enabled = 0;
} else {
ucon = rd_regl(port, S3C2410_UCON);
ucon &= ~S3C2410_UCON_RXIRQMODE;
wr_regl(port, S3C2410_UCON, ucon);
ourport->rx_enabled = 0;
}
if (ourport->dbg_mode & UART_DBG_MODE)
dev_err(dev, "UART suspend notification for tty framework.\n");
}
return 0;
}
static int exynos_serial_suspend_noirq(struct device *dev)
{
struct uart_port *port = exynos_dev_to_port(dev);
struct exynos_uart_port *ourport = to_ourport(port);
unsigned int ucon;
if (ourport->dbg_uart_ch && !console_suspend_enabled) {
uart_clock_enable(ourport);
/* disable Tx, Rx mode bit for suspend in case of HWACG */
ucon = rd_regl(port, S3C2410_UCON);
ucon &= ~S3C2410_UCON_TXIRQMODE;
wr_regl(port, S3C2410_UCON, ucon);
exynos_usi_stop(port);
uart_clock_disable(ourport);
ourport->tx_enabled = 0;
}
return 0;
}
static int s3c24xx_serial_prepare(struct device *dev)
{
struct uart_port *port = exynos_dev_to_port(dev);
struct exynos_uart_port *ourport = to_ourport(port);
if (ourport->port.line == BLUETOOTH_UART_PORT_LINE) {
dev_info(&ourport->pdev->dev, "PREPARE : Turn on BT wake_peer\n");
ourport->wake_peer_en = 1;
if(ourport->wake_peer_pended) {
ourport->wake_peer_pended = 0;
if (ourport->port.line == BLUETOOTH_UART_PORT_LINE &&
s3c2410_serial_wake_peer[BLUETOOTH_UART_PORT_LINE])
s3c2410_serial_wake_peer[BLUETOOTH_UART_PORT_LINE](port);
}
}
return 0;
}
static int exynos_serial_resume(struct device *dev)
{
struct uart_port *port = exynos_dev_to_port(dev);
struct exynos_uart_port *ourport = to_ourport(port);
if (port) {
if (!IS_ERR(ourport->usi_reg))
regmap_update_bits(ourport->usi_reg, ourport->usi_offset,
USI_SW_CONF_MASK, USI_UART_SW_CONF);
if ((ourport->dbg_uart_ch) && (!console_suspend_enabled)) {
uart_clock_enable(ourport);
exynos_usi_init(port);
}
uart_resume_port(&exynos_uart_drv, port);
if ((ourport->dbg_uart_ch) && (!console_suspend_enabled)) {
exynos_serial_resetport(port,
exynos_port_to_cfg(port));
__clear_bit(S3C64XX_UINTM_RXD,
portaddrl(port, S3C64XX_UINTM));
}
if (ourport->rts_control)
change_uart_gpio(DEFAULT_PINCTRL, ourport);
if (ourport->dbg_mode & UART_DBG_MODE)
dev_err(dev, "UART resume notification for tty framework.\n");
}
return 0;
}
static int exynos_serial_resume_noirq(struct device *dev)
{
struct uart_port *port = exynos_dev_to_port(dev);
struct exynos_uart_port *ourport = to_ourport(port);
if (port) {
/* restore IRQ mask */
if (exynos_serial_has_interrupt_mask(port)) {
unsigned int uintm = 0xf;
if (ourport->tx_enabled)
uintm &= ~S3C64XX_UINTM_TXD_MSK;
if (ourport->rx_enabled)
uintm &= ~S3C64XX_UINTM_RXD_MSK;
uart_clock_enable(ourport);
wr_regl(port, S3C64XX_UINTM, uintm);
uart_clock_disable(ourport);
}
}
return 0;
}
static const struct dev_pm_ops exynos_serial_pm_ops = {
.suspend = exynos_serial_suspend,
.suspend_noirq = exynos_serial_suspend_noirq,
.resume = exynos_serial_resume,
.resume_noirq = exynos_serial_resume_noirq,
.prepare = s3c24xx_serial_prepare,
};
#define SERIAL_EXYNOS_PM_OPS (&exynos_serial_pm_ops)
#else /* !CONFIG_PM_SLEEP */
#define SERIAL_EXYNOS_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
/* Console code */
static struct uart_port *cons_uart;
static int
exynos_serial_console_txrdy(struct uart_port *port, unsigned int ufcon)
{
struct exynos_uart_info *info = exynos_port_to_info(port);
unsigned long ufstat, utrstat;
if (ufcon & S3C2410_UFCON_FIFOMODE) {
/* fifo mode - check amount of data in fifo registers... */
ufstat = rd_regl(port, S3C2410_UFSTAT);
return (ufstat & info->tx_fifofull) ? 0 : 1;
}
/* in non-fifo mode, we go and use the tx buffer empty */
utrstat = rd_regl(port, S3C2410_UTRSTAT);
return (utrstat & S3C2410_UTRSTAT_TXE) ? 1 : 0;
}
static bool
exynos_port_configured(unsigned int ucon)
{
/* consider the serial port configured if the tx/rx mode set */
return (ucon & 0xf) != 0;
}
#ifdef CONFIG_CONSOLE_POLL
/*
* Console polling routines for writing and reading from the uart while
* in an interrupt or debug context.
*/
static int exynos_serial_get_poll_char(struct uart_port *port)
{
struct exynos_uart_port *ourport = to_ourport(port);
unsigned int ufstat;
ufstat = rd_regl(port, S3C2410_UFSTAT);
if (exynos_serial_rx_fifocnt(ourport, ufstat) == 0)
return NO_POLL_CHAR;
return rd_reg(port, S3C2410_URXH);
}
static void exynos_serial_put_poll_char(struct uart_port *port,
unsigned char c)
{
unsigned int ufcon = rd_regl(port, S3C2410_UFCON);
unsigned int ucon = rd_regl(port, S3C2410_UCON);
/* not possible to xmit on unconfigured port */
if (!exynos_port_configured(ucon))
return;
while (!exynos_serial_console_txrdy(port, ufcon))
cpu_relax();
wr_reg(port, S3C2410_UTXH, c);
}
#endif /* CONFIG_CONSOLE_POLL */
static void
exynos_serial_console_putchar(struct uart_port *port, int ch)
{
unsigned int ufcon = rd_regl(port, S3C2410_UFCON);
unsigned int ucon;
while (1) {
ucon = rd_regl(port, S3C2410_UCON);
/* not possible to xmit on unconfigured port */
if (!exynos_port_configured(ucon))
return;
if (exynos_serial_console_txrdy(port, ufcon))
break;
cpu_relax();
}
wr_reg(port, S3C2410_UTXH, ch);
}
static void
exynos_serial_console_write(struct console *co, const char *s,
unsigned int count)
{
unsigned int ucon = rd_regl(cons_uart, S3C2410_UCON);
/* not possible to xmit on unconfigured port */
if (!exynos_port_configured(ucon))
return;
uart_console_write(cons_uart, s, count, exynos_serial_console_putchar);
}
static void
exynos_serial_get_options(struct uart_port *port, int *baud,
int *parity, int *bits)
{
struct exynos_uart_port *ourport = to_ourport(port);
unsigned int ulcon;
unsigned int ucon;
unsigned int ubrdiv;
unsigned long rate;
int ret;
ulcon = rd_regl(port, S3C2410_ULCON);
ucon = rd_regl(port, S3C2410_UCON);
ubrdiv = rd_regl(port, S3C2410_UBRDIV);
pr_debug("exynos_serial_get_options: port=%p\n"
"registers: ulcon=%08x, ucon=%08x, ubdriv=%08x\n",
port, ulcon, ucon, ubrdiv);
if (exynos_port_configured(ucon)) {
switch (ulcon & S3C2410_LCON_CSMASK) {
case S3C2410_LCON_CS5:
*bits = 5;
break;
case S3C2410_LCON_CS6:
*bits = 6;
break;
case S3C2410_LCON_CS7:
*bits = 7;
break;
case S3C2410_LCON_CS8:
default:
*bits = 8;
break;
}
switch (ulcon & S3C2410_LCON_PMASK) {
case S3C2410_LCON_PEVEN:
*parity = 'e';
break;
case S3C2410_LCON_PODD:
*parity = 'o';
break;
case S3C2410_LCON_PNONE:
default:
*parity = 'n';
}
/* now calculate the baud rate */
rate = clk_get_rate(ourport->clk);
if (ourport->src_clk_rate && rate != ourport->src_clk_rate)
{
ret = clk_set_rate(ourport->clk, ourport->src_clk_rate);
if (ret < 0)
dev_err(&ourport->pdev->dev, "UART clk set failed\n");
rate = clk_get_rate(ourport->clk);
}
*baud = rate / (16 * (ubrdiv + 1));
pr_debug("calculated baud %d\n", *baud);
}
}
static int
exynos_serial_console_setup(struct console *co, char *options)
{
struct uart_port *port;
int baud = 9600;
int bits = 8;
int parity = 'n';
int flow = 'n';
pr_debug("exynos_serial_console_setup: co=%p (%d), %s\n",
co, co->index, options);
/* is this a valid port */
if (co->index == -1 || co->index >= CONFIG_SERIAL_EXYNOS_UARTS)
co->index = 0;
port = &exynos_serial_ports[co->index].port;
/* is the port configured? */
if (port->mapbase == 0x0)
return -ENODEV;
cons_uart = port;
pr_debug("exynos_serial_console_setup: port=%p (%d)\n", port, co->index);
/*
* Check whether an invalid uart number has been specified, and
* if so, search for the first available port that does have
* console support.
*/
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
else
exynos_serial_get_options(port, &baud, &parity, &bits);
pr_debug("exynos_serial_console_setup: baud %d\n", baud);
return uart_set_options(port, co, baud, parity, bits, flow);
}
static struct tty_driver *exynos_console_device(struct console *co, int *index)
{
struct uart_driver *p = co->data;
*index = co->index;
return p->tty_driver;
}
static struct console exynos_serial_console = {
.name = EXYNOS_SERIAL_NAME,
.device = exynos_console_device,
.flags = CON_PRINTBUFFER,
.index = -1,
.write = exynos_serial_console_write,
.setup = exynos_serial_console_setup,
.data = &exynos_uart_drv,
};
static struct exynos_serial_drv_data exynos_serial_drv_data = {
.info = &(struct exynos_uart_info) {
.name = "Samsung Exynos UART",
.type = PORT_S3C6400,
.has_divslot = 1,
.rx_fifomask = S5PV210_UFSTAT_RXMASK,
.rx_fifoshift = S5PV210_UFSTAT_RXSHIFT,
.rx_fifofull = S5PV210_UFSTAT_RXFULL,
.tx_fifofull = S5PV210_UFSTAT_TXFULL,
.tx_fifomask = S5PV210_UFSTAT_TXMASK,
.tx_fifoshift = S5PV210_UFSTAT_TXSHIFT,
.rts_trig_shift = S5PV210_UMCON_RTSTRIG_SHIFT,
.def_clk_sel = S3C2410_UCON_CLKSEL0,
.num_clks = 1,
.clksel_mask = 0,
.clksel_shift = 0,
},
.def_cfg = &(struct s3c2410_uartcfg) {
.ucon = S5PV210_UCON_DEFAULT,
.ufcon = S5PV210_UFCON_DEFAULT,
.has_fracval = 1,
},
.fifosize = { 0, },
};
#define EXYNOS_SERIAL_DRV_DATA ((kernel_ulong_t)&exynos_serial_drv_data)
static const struct platform_device_id exynos_serial_driver_ids[] = {
{
.name = "exynos-uart",
.driver_data = EXYNOS_SERIAL_DRV_DATA,
},
{ },
};
MODULE_DEVICE_TABLE(platform, exynos_serial_driver_ids);
#ifdef CONFIG_OF
static const struct of_device_id exynos_uart_dt_match[] = {
{ .compatible = "samsung,exynos-uart",
.data = (void *)EXYNOS_SERIAL_DRV_DATA },
{},
};
MODULE_DEVICE_TABLE(of, exynos_uart_dt_match);
#endif
static struct platform_driver exynos_serial_driver = {
.probe = exynos_serial_probe,
.remove = exynos_serial_remove,
.shutdown = exynos_serial_platform_shutdown,
.id_table = exynos_serial_driver_ids,
.driver = {
.name = "exynos-uart",
.pm = SERIAL_EXYNOS_PM_OPS,
.of_match_table = of_match_ptr(exynos_uart_dt_match),
},
};
/* module initialisation code */
static int __init exynos_serial_modinit(void)
{
int ret;
ret = uart_register_driver(&exynos_uart_drv);
if (ret < 0) {
pr_err("Failed to register Samsung UART driver\n");
return ret;
}
#if IS_ENABLED(CONFIG_EXYNOS_CPUPM)
exynos_cpupm_notifier_register(&exynos_serial_notifier_block);
#endif
register_reboot_notifier(&exynos_serial_reboot_notifier_block);
register_pm_notifier(&exynos_serial_nb);
return platform_driver_register(&exynos_serial_driver);
}
static void __exit exynos_serial_modexit(void)
{
platform_driver_unregister(&exynos_serial_driver);
uart_unregister_driver(&exynos_uart_drv);
}
module_init(exynos_serial_modinit);
module_exit(exynos_serial_modexit);
MODULE_ALIAS("platform:exynos-uart");
MODULE_DESCRIPTION("Samsung SoC Serial port driver");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL v2");