67c6fa1332
[ Commit fdc6d38d64a20c542b1867ebeb8dd03b98829336 upstream ] The EFI memory map is a description of the memory layout as provided by the firmware, and only x86 manipulates it in various different ways for its own memory bookkeeping. So let's move the memmap routines that are only used by x86 into the x86 arch tree. [ardb: minor tweaks for linux-5.10.y backport] Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
157 lines
4.2 KiB
C
Executable file
157 lines
4.2 KiB
C
Executable file
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Common EFI memory map functions.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "efi: " fmt
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/io.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/early_ioremap.h>
|
|
#include <asm/efi.h>
|
|
|
|
#ifndef __efi_memmap_free
|
|
#define __efi_memmap_free(phys, size, flags) do { } while (0)
|
|
#endif
|
|
|
|
/**
|
|
* __efi_memmap_init - Common code for mapping the EFI memory map
|
|
* @data: EFI memory map data
|
|
*
|
|
* This function takes care of figuring out which function to use to
|
|
* map the EFI memory map in efi.memmap based on how far into the boot
|
|
* we are.
|
|
*
|
|
* During bootup EFI_MEMMAP_LATE in data->flags should be clear since we
|
|
* only have access to the early_memremap*() functions as the vmalloc
|
|
* space isn't setup. Once the kernel is fully booted we can fallback
|
|
* to the more robust memremap*() API.
|
|
*
|
|
* Returns zero on success, a negative error code on failure.
|
|
*/
|
|
int __init __efi_memmap_init(struct efi_memory_map_data *data)
|
|
{
|
|
struct efi_memory_map map;
|
|
phys_addr_t phys_map;
|
|
|
|
if (efi_enabled(EFI_PARAVIRT))
|
|
return 0;
|
|
|
|
phys_map = data->phys_map;
|
|
|
|
if (data->flags & EFI_MEMMAP_LATE)
|
|
map.map = memremap(phys_map, data->size, MEMREMAP_WB);
|
|
else
|
|
map.map = early_memremap(phys_map, data->size);
|
|
|
|
if (!map.map) {
|
|
pr_err("Could not map the memory map!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (efi.memmap.flags & (EFI_MEMMAP_MEMBLOCK | EFI_MEMMAP_SLAB))
|
|
__efi_memmap_free(efi.memmap.phys_map,
|
|
efi.memmap.desc_size * efi.memmap.nr_map,
|
|
efi.memmap.flags);
|
|
|
|
map.phys_map = data->phys_map;
|
|
map.nr_map = data->size / data->desc_size;
|
|
map.map_end = map.map + data->size;
|
|
|
|
map.desc_version = data->desc_version;
|
|
map.desc_size = data->desc_size;
|
|
map.flags = data->flags;
|
|
|
|
set_bit(EFI_MEMMAP, &efi.flags);
|
|
|
|
efi.memmap = map;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* efi_memmap_init_early - Map the EFI memory map data structure
|
|
* @data: EFI memory map data
|
|
*
|
|
* Use early_memremap() to map the passed in EFI memory map and assign
|
|
* it to efi.memmap.
|
|
*/
|
|
int __init efi_memmap_init_early(struct efi_memory_map_data *data)
|
|
{
|
|
/* Cannot go backwards */
|
|
WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE);
|
|
|
|
data->flags = 0;
|
|
return __efi_memmap_init(data);
|
|
}
|
|
|
|
void __init efi_memmap_unmap(void)
|
|
{
|
|
if (!efi_enabled(EFI_MEMMAP))
|
|
return;
|
|
|
|
if (!(efi.memmap.flags & EFI_MEMMAP_LATE)) {
|
|
unsigned long size;
|
|
|
|
size = efi.memmap.desc_size * efi.memmap.nr_map;
|
|
early_memunmap(efi.memmap.map, size);
|
|
} else {
|
|
memunmap(efi.memmap.map);
|
|
}
|
|
|
|
efi.memmap.map = NULL;
|
|
clear_bit(EFI_MEMMAP, &efi.flags);
|
|
}
|
|
|
|
/**
|
|
* efi_memmap_init_late - Map efi.memmap with memremap()
|
|
* @phys_addr: Physical address of the new EFI memory map
|
|
* @size: Size in bytes of the new EFI memory map
|
|
*
|
|
* Setup a mapping of the EFI memory map using ioremap_cache(). This
|
|
* function should only be called once the vmalloc space has been
|
|
* setup and is therefore not suitable for calling during early EFI
|
|
* initialise, e.g. in efi_init(). Additionally, it expects
|
|
* efi_memmap_init_early() to have already been called.
|
|
*
|
|
* The reason there are two EFI memmap initialisation
|
|
* (efi_memmap_init_early() and this late version) is because the
|
|
* early EFI memmap should be explicitly unmapped once EFI
|
|
* initialisation is complete as the fixmap space used to map the EFI
|
|
* memmap (via early_memremap()) is a scarce resource.
|
|
*
|
|
* This late mapping is intended to persist for the duration of
|
|
* runtime so that things like efi_mem_desc_lookup() and
|
|
* efi_mem_attributes() always work.
|
|
*
|
|
* Returns zero on success, a negative error code on failure.
|
|
*/
|
|
int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size)
|
|
{
|
|
struct efi_memory_map_data data = {
|
|
.phys_map = addr,
|
|
.size = size,
|
|
.flags = EFI_MEMMAP_LATE,
|
|
};
|
|
|
|
/* Did we forget to unmap the early EFI memmap? */
|
|
WARN_ON(efi.memmap.map);
|
|
|
|
/* Were we already called? */
|
|
WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE);
|
|
|
|
/*
|
|
* It makes no sense to allow callers to register different
|
|
* values for the following fields. Copy them out of the
|
|
* existing early EFI memmap.
|
|
*/
|
|
data.desc_version = efi.memmap.desc_version;
|
|
data.desc_size = efi.memmap.desc_size;
|
|
|
|
return __efi_memmap_init(&data);
|
|
}
|