![Borislav Petkov (AMD)](/assets/img/avatar_default.png)
commit 04c3024560d3a14acd18d0a51a1d0a89d29b7eb5 upstream. AMD does not have the requirement for a synchronization barrier when acccessing a certain group of MSRs. Do not incur that unnecessary penalty there. There will be a CPUID bit which explicitly states that a MFENCE is not needed. Once that bit is added to the APM, this will be extended with it. While at it, move to processor.h to avoid include hell. Untangling that file properly is a matter for another day. Some notes on the performance aspect of why this is relevant, courtesy of Kishon VijayAbraham <Kishon.VijayAbraham@amd.com>: On a AMD Zen4 system with 96 cores, a modified ipi-bench[1] on a VM shows x2AVIC IPI rate is 3% to 4% lower than AVIC IPI rate. The ipi-bench is modified so that the IPIs are sent between two vCPUs in the same CCX. This also requires to pin the vCPU to a physical core to prevent any latencies. This simulates the use case of pinning vCPUs to the thread of a single CCX to avoid interrupt IPI latency. In order to avoid run-to-run variance (for both x2AVIC and AVIC), the below configurations are done: 1) Disable Power States in BIOS (to prevent the system from going to lower power state) 2) Run the system at fixed frequency 2500MHz (to prevent the system from increasing the frequency when the load is more) With the above configuration: *) Performance measured using ipi-bench for AVIC: Average Latency: 1124.98ns [Time to send IPI from one vCPU to another vCPU] Cumulative throughput: 42.6759M/s [Total number of IPIs sent in a second from 48 vCPUs simultaneously] *) Performance measured using ipi-bench for x2AVIC: Average Latency: 1172.42ns [Time to send IPI from one vCPU to another vCPU] Cumulative throughput: 40.9432M/s [Total number of IPIs sent in a second from 48 vCPUs simultaneously] From above, x2AVIC latency is ~4% more than AVIC. However, the expectation is x2AVIC performance to be better or equivalent to AVIC. Upon analyzing the perf captures, it is observed significant time is spent in weak_wrmsr_fence() invoked by x2apic_send_IPI(). With the fix to skip weak_wrmsr_fence() *) Performance measured using ipi-bench for x2AVIC: Average Latency: 1117.44ns [Time to send IPI from one vCPU to another vCPU] Cumulative throughput: 42.9608M/s [Total number of IPIs sent in a second from 48 vCPUs simultaneously] Comparing the performance of x2AVIC with and without the fix, it can be seen the performance improves by ~4%. Performance captured using an unmodified ipi-bench using the 'mesh-ipi' option with and without weak_wrmsr_fence() on a Zen4 system also showed significant performance improvement without weak_wrmsr_fence(). The 'mesh-ipi' option ignores CCX or CCD and just picks random vCPU. Average throughput (10 iterations) with weak_wrmsr_fence(), Cumulative throughput: 4933374 IPI/s Average throughput (10 iterations) without weak_wrmsr_fence(), Cumulative throughput: 6355156 IPI/s [1] https://github.com/bytedance/kvm-utils/tree/master/microbenchmark/ipi-bench Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230622095212.20940-1-bp@alien8.de Signed-off-by: Kishon Vijay Abraham I <kvijayab@amd.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
1349 lines
34 KiB
C
Executable file
1349 lines
34 KiB
C
Executable file
// SPDX-License-Identifier: GPL-2.0-only
|
|
#include <linux/export.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/io.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/random.h>
|
|
#include <linux/topology.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/cacheinfo.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/spec-ctrl.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/pci-direct.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/resctrl.h>
|
|
|
|
#ifdef CONFIG_X86_64
|
|
# include <asm/mmconfig.h>
|
|
# include <asm/set_memory.h>
|
|
#endif
|
|
|
|
#include "cpu.h"
|
|
|
|
/*
|
|
* nodes_per_socket: Stores the number of nodes per socket.
|
|
* Refer to Fam15h Models 00-0fh BKDG - CPUID Fn8000_001E_ECX
|
|
* Node Identifiers[10:8]
|
|
*/
|
|
static u32 nodes_per_socket = 1;
|
|
|
|
/*
|
|
* AMD errata checking
|
|
*
|
|
* Errata are defined as arrays of ints using the AMD_LEGACY_ERRATUM() or
|
|
* AMD_OSVW_ERRATUM() macros. The latter is intended for newer errata that
|
|
* have an OSVW id assigned, which it takes as first argument. Both take a
|
|
* variable number of family-specific model-stepping ranges created by
|
|
* AMD_MODEL_RANGE().
|
|
*
|
|
* Example:
|
|
*
|
|
* const int amd_erratum_319[] =
|
|
* AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0x4, 0x2),
|
|
* AMD_MODEL_RANGE(0x10, 0x8, 0x0, 0x8, 0x0),
|
|
* AMD_MODEL_RANGE(0x10, 0x9, 0x0, 0x9, 0x0));
|
|
*/
|
|
|
|
#define AMD_LEGACY_ERRATUM(...) { -1, __VA_ARGS__, 0 }
|
|
#define AMD_OSVW_ERRATUM(osvw_id, ...) { osvw_id, __VA_ARGS__, 0 }
|
|
#define AMD_MODEL_RANGE(f, m_start, s_start, m_end, s_end) \
|
|
((f << 24) | (m_start << 16) | (s_start << 12) | (m_end << 4) | (s_end))
|
|
#define AMD_MODEL_RANGE_FAMILY(range) (((range) >> 24) & 0xff)
|
|
#define AMD_MODEL_RANGE_START(range) (((range) >> 12) & 0xfff)
|
|
#define AMD_MODEL_RANGE_END(range) ((range) & 0xfff)
|
|
|
|
static const int amd_erratum_400[] =
|
|
AMD_OSVW_ERRATUM(1, AMD_MODEL_RANGE(0xf, 0x41, 0x2, 0xff, 0xf),
|
|
AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0xff, 0xf));
|
|
|
|
static const int amd_erratum_383[] =
|
|
AMD_OSVW_ERRATUM(3, AMD_MODEL_RANGE(0x10, 0, 0, 0xff, 0xf));
|
|
|
|
/* #1054: Instructions Retired Performance Counter May Be Inaccurate */
|
|
static const int amd_erratum_1054[] =
|
|
AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x17, 0, 0, 0x2f, 0xf));
|
|
|
|
static const int amd_zenbleed[] =
|
|
AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x17, 0x30, 0x0, 0x4f, 0xf),
|
|
AMD_MODEL_RANGE(0x17, 0x60, 0x0, 0x7f, 0xf),
|
|
AMD_MODEL_RANGE(0x17, 0x90, 0x0, 0x91, 0xf),
|
|
AMD_MODEL_RANGE(0x17, 0xa0, 0x0, 0xaf, 0xf));
|
|
|
|
static const int amd_div0[] =
|
|
AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x17, 0x00, 0x0, 0x2f, 0xf),
|
|
AMD_MODEL_RANGE(0x17, 0x50, 0x0, 0x5f, 0xf));
|
|
|
|
static const int amd_erratum_1485[] =
|
|
AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x19, 0x10, 0x0, 0x1f, 0xf),
|
|
AMD_MODEL_RANGE(0x19, 0x60, 0x0, 0xaf, 0xf));
|
|
|
|
static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum)
|
|
{
|
|
int osvw_id = *erratum++;
|
|
u32 range;
|
|
u32 ms;
|
|
|
|
if (osvw_id >= 0 && osvw_id < 65536 &&
|
|
cpu_has(cpu, X86_FEATURE_OSVW)) {
|
|
u64 osvw_len;
|
|
|
|
rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, osvw_len);
|
|
if (osvw_id < osvw_len) {
|
|
u64 osvw_bits;
|
|
|
|
rdmsrl(MSR_AMD64_OSVW_STATUS + (osvw_id >> 6),
|
|
osvw_bits);
|
|
return osvw_bits & (1ULL << (osvw_id & 0x3f));
|
|
}
|
|
}
|
|
|
|
/* OSVW unavailable or ID unknown, match family-model-stepping range */
|
|
ms = (cpu->x86_model << 4) | cpu->x86_stepping;
|
|
while ((range = *erratum++))
|
|
if ((cpu->x86 == AMD_MODEL_RANGE_FAMILY(range)) &&
|
|
(ms >= AMD_MODEL_RANGE_START(range)) &&
|
|
(ms <= AMD_MODEL_RANGE_END(range)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
|
|
{
|
|
u32 gprs[8] = { 0 };
|
|
int err;
|
|
|
|
WARN_ONCE((boot_cpu_data.x86 != 0xf),
|
|
"%s should only be used on K8!\n", __func__);
|
|
|
|
gprs[1] = msr;
|
|
gprs[7] = 0x9c5a203a;
|
|
|
|
err = rdmsr_safe_regs(gprs);
|
|
|
|
*p = gprs[0] | ((u64)gprs[2] << 32);
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val)
|
|
{
|
|
u32 gprs[8] = { 0 };
|
|
|
|
WARN_ONCE((boot_cpu_data.x86 != 0xf),
|
|
"%s should only be used on K8!\n", __func__);
|
|
|
|
gprs[0] = (u32)val;
|
|
gprs[1] = msr;
|
|
gprs[2] = val >> 32;
|
|
gprs[7] = 0x9c5a203a;
|
|
|
|
return wrmsr_safe_regs(gprs);
|
|
}
|
|
|
|
/*
|
|
* B step AMD K6 before B 9730xxxx have hardware bugs that can cause
|
|
* misexecution of code under Linux. Owners of such processors should
|
|
* contact AMD for precise details and a CPU swap.
|
|
*
|
|
* See http://www.multimania.com/poulot/k6bug.html
|
|
* and section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6"
|
|
* (Publication # 21266 Issue Date: August 1998)
|
|
*
|
|
* The following test is erm.. interesting. AMD neglected to up
|
|
* the chip setting when fixing the bug but they also tweaked some
|
|
* performance at the same time..
|
|
*/
|
|
|
|
#ifdef CONFIG_X86_32
|
|
extern __visible void vide(void);
|
|
__asm__(".text\n"
|
|
".globl vide\n"
|
|
".type vide, @function\n"
|
|
".align 4\n"
|
|
"vide: ret\n");
|
|
#endif
|
|
|
|
static void init_amd_k5(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* General Systems BIOSen alias the cpu frequency registers
|
|
* of the Elan at 0x000df000. Unfortunately, one of the Linux
|
|
* drivers subsequently pokes it, and changes the CPU speed.
|
|
* Workaround : Remove the unneeded alias.
|
|
*/
|
|
#define CBAR (0xfffc) /* Configuration Base Address (32-bit) */
|
|
#define CBAR_ENB (0x80000000)
|
|
#define CBAR_KEY (0X000000CB)
|
|
if (c->x86_model == 9 || c->x86_model == 10) {
|
|
if (inl(CBAR) & CBAR_ENB)
|
|
outl(0 | CBAR_KEY, CBAR);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void init_amd_k6(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
u32 l, h;
|
|
int mbytes = get_num_physpages() >> (20-PAGE_SHIFT);
|
|
|
|
if (c->x86_model < 6) {
|
|
/* Based on AMD doc 20734R - June 2000 */
|
|
if (c->x86_model == 0) {
|
|
clear_cpu_cap(c, X86_FEATURE_APIC);
|
|
set_cpu_cap(c, X86_FEATURE_PGE);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (c->x86_model == 6 && c->x86_stepping == 1) {
|
|
const int K6_BUG_LOOP = 1000000;
|
|
int n;
|
|
void (*f_vide)(void);
|
|
u64 d, d2;
|
|
|
|
pr_info("AMD K6 stepping B detected - ");
|
|
|
|
/*
|
|
* It looks like AMD fixed the 2.6.2 bug and improved indirect
|
|
* calls at the same time.
|
|
*/
|
|
|
|
n = K6_BUG_LOOP;
|
|
f_vide = vide;
|
|
OPTIMIZER_HIDE_VAR(f_vide);
|
|
d = rdtsc();
|
|
while (n--)
|
|
f_vide();
|
|
d2 = rdtsc();
|
|
d = d2-d;
|
|
|
|
if (d > 20*K6_BUG_LOOP)
|
|
pr_cont("system stability may be impaired when more than 32 MB are used.\n");
|
|
else
|
|
pr_cont("probably OK (after B9730xxxx).\n");
|
|
}
|
|
|
|
/* K6 with old style WHCR */
|
|
if (c->x86_model < 8 ||
|
|
(c->x86_model == 8 && c->x86_stepping < 8)) {
|
|
/* We can only write allocate on the low 508Mb */
|
|
if (mbytes > 508)
|
|
mbytes = 508;
|
|
|
|
rdmsr(MSR_K6_WHCR, l, h);
|
|
if ((l&0x0000FFFF) == 0) {
|
|
unsigned long flags;
|
|
l = (1<<0)|((mbytes/4)<<1);
|
|
local_irq_save(flags);
|
|
wbinvd();
|
|
wrmsr(MSR_K6_WHCR, l, h);
|
|
local_irq_restore(flags);
|
|
pr_info("Enabling old style K6 write allocation for %d Mb\n",
|
|
mbytes);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if ((c->x86_model == 8 && c->x86_stepping > 7) ||
|
|
c->x86_model == 9 || c->x86_model == 13) {
|
|
/* The more serious chips .. */
|
|
|
|
if (mbytes > 4092)
|
|
mbytes = 4092;
|
|
|
|
rdmsr(MSR_K6_WHCR, l, h);
|
|
if ((l&0xFFFF0000) == 0) {
|
|
unsigned long flags;
|
|
l = ((mbytes>>2)<<22)|(1<<16);
|
|
local_irq_save(flags);
|
|
wbinvd();
|
|
wrmsr(MSR_K6_WHCR, l, h);
|
|
local_irq_restore(flags);
|
|
pr_info("Enabling new style K6 write allocation for %d Mb\n",
|
|
mbytes);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (c->x86_model == 10) {
|
|
/* AMD Geode LX is model 10 */
|
|
/* placeholder for any needed mods */
|
|
return;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void init_amd_k7(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
u32 l, h;
|
|
|
|
/*
|
|
* Bit 15 of Athlon specific MSR 15, needs to be 0
|
|
* to enable SSE on Palomino/Morgan/Barton CPU's.
|
|
* If the BIOS didn't enable it already, enable it here.
|
|
*/
|
|
if (c->x86_model >= 6 && c->x86_model <= 10) {
|
|
if (!cpu_has(c, X86_FEATURE_XMM)) {
|
|
pr_info("Enabling disabled K7/SSE Support.\n");
|
|
msr_clear_bit(MSR_K7_HWCR, 15);
|
|
set_cpu_cap(c, X86_FEATURE_XMM);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* It's been determined by AMD that Athlons since model 8 stepping 1
|
|
* are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx
|
|
* As per AMD technical note 27212 0.2
|
|
*/
|
|
if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) {
|
|
rdmsr(MSR_K7_CLK_CTL, l, h);
|
|
if ((l & 0xfff00000) != 0x20000000) {
|
|
pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n",
|
|
l, ((l & 0x000fffff)|0x20000000));
|
|
wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h);
|
|
}
|
|
}
|
|
|
|
/* calling is from identify_secondary_cpu() ? */
|
|
if (!c->cpu_index)
|
|
return;
|
|
|
|
/*
|
|
* Certain Athlons might work (for various values of 'work') in SMP
|
|
* but they are not certified as MP capable.
|
|
*/
|
|
/* Athlon 660/661 is valid. */
|
|
if ((c->x86_model == 6) && ((c->x86_stepping == 0) ||
|
|
(c->x86_stepping == 1)))
|
|
return;
|
|
|
|
/* Duron 670 is valid */
|
|
if ((c->x86_model == 7) && (c->x86_stepping == 0))
|
|
return;
|
|
|
|
/*
|
|
* Athlon 662, Duron 671, and Athlon >model 7 have capability
|
|
* bit. It's worth noting that the A5 stepping (662) of some
|
|
* Athlon XP's have the MP bit set.
|
|
* See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
|
|
* more.
|
|
*/
|
|
if (((c->x86_model == 6) && (c->x86_stepping >= 2)) ||
|
|
((c->x86_model == 7) && (c->x86_stepping >= 1)) ||
|
|
(c->x86_model > 7))
|
|
if (cpu_has(c, X86_FEATURE_MP))
|
|
return;
|
|
|
|
/* If we get here, not a certified SMP capable AMD system. */
|
|
|
|
/*
|
|
* Don't taint if we are running SMP kernel on a single non-MP
|
|
* approved Athlon
|
|
*/
|
|
WARN_ONCE(1, "WARNING: This combination of AMD"
|
|
" processors is not suitable for SMP.\n");
|
|
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* To workaround broken NUMA config. Read the comment in
|
|
* srat_detect_node().
|
|
*/
|
|
static int nearby_node(int apicid)
|
|
{
|
|
int i, node;
|
|
|
|
for (i = apicid - 1; i >= 0; i--) {
|
|
node = __apicid_to_node[i];
|
|
if (node != NUMA_NO_NODE && node_online(node))
|
|
return node;
|
|
}
|
|
for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
|
|
node = __apicid_to_node[i];
|
|
if (node != NUMA_NO_NODE && node_online(node))
|
|
return node;
|
|
}
|
|
return first_node(node_online_map); /* Shouldn't happen */
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Fix up cpu_core_id for pre-F17h systems to be in the
|
|
* [0 .. cores_per_node - 1] range. Not really needed but
|
|
* kept so as not to break existing setups.
|
|
*/
|
|
static void legacy_fixup_core_id(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 cus_per_node;
|
|
|
|
if (c->x86 >= 0x17)
|
|
return;
|
|
|
|
cus_per_node = c->x86_max_cores / nodes_per_socket;
|
|
c->cpu_core_id %= cus_per_node;
|
|
}
|
|
|
|
/*
|
|
* Fixup core topology information for
|
|
* (1) AMD multi-node processors
|
|
* Assumption: Number of cores in each internal node is the same.
|
|
* (2) AMD processors supporting compute units
|
|
*/
|
|
static void amd_get_topology(struct cpuinfo_x86 *c)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
/* get information required for multi-node processors */
|
|
if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
|
|
int err;
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
cpuid(0x8000001e, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->cpu_die_id = ecx & 0xff;
|
|
|
|
if (c->x86 == 0x15)
|
|
c->cu_id = ebx & 0xff;
|
|
|
|
if (c->x86 >= 0x17) {
|
|
c->cpu_core_id = ebx & 0xff;
|
|
|
|
if (smp_num_siblings > 1)
|
|
c->x86_max_cores /= smp_num_siblings;
|
|
}
|
|
|
|
/*
|
|
* In case leaf B is available, use it to derive
|
|
* topology information.
|
|
*/
|
|
err = detect_extended_topology(c);
|
|
if (!err)
|
|
c->x86_coreid_bits = get_count_order(c->x86_max_cores);
|
|
|
|
cacheinfo_amd_init_llc_id(c, cpu);
|
|
|
|
} else if (cpu_has(c, X86_FEATURE_NODEID_MSR)) {
|
|
u64 value;
|
|
|
|
rdmsrl(MSR_FAM10H_NODE_ID, value);
|
|
c->cpu_die_id = value & 7;
|
|
|
|
per_cpu(cpu_llc_id, cpu) = c->cpu_die_id;
|
|
} else
|
|
return;
|
|
|
|
if (nodes_per_socket > 1) {
|
|
set_cpu_cap(c, X86_FEATURE_AMD_DCM);
|
|
legacy_fixup_core_id(c);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* On a AMD dual core setup the lower bits of the APIC id distinguish the cores.
|
|
* Assumes number of cores is a power of two.
|
|
*/
|
|
static void amd_detect_cmp(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned bits;
|
|
int cpu = smp_processor_id();
|
|
|
|
bits = c->x86_coreid_bits;
|
|
/* Low order bits define the core id (index of core in socket) */
|
|
c->cpu_core_id = c->initial_apicid & ((1 << bits)-1);
|
|
/* Convert the initial APIC ID into the socket ID */
|
|
c->phys_proc_id = c->initial_apicid >> bits;
|
|
/* use socket ID also for last level cache */
|
|
per_cpu(cpu_llc_id, cpu) = c->cpu_die_id = c->phys_proc_id;
|
|
}
|
|
|
|
static void amd_detect_ppin(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned long long val;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_AMD_PPIN))
|
|
return;
|
|
|
|
/* When PPIN is defined in CPUID, still need to check PPIN_CTL MSR */
|
|
if (rdmsrl_safe(MSR_AMD_PPIN_CTL, &val))
|
|
goto clear_ppin;
|
|
|
|
/* PPIN is locked in disabled mode, clear feature bit */
|
|
if ((val & 3UL) == 1UL)
|
|
goto clear_ppin;
|
|
|
|
/* If PPIN is disabled, try to enable it */
|
|
if (!(val & 2UL)) {
|
|
wrmsrl_safe(MSR_AMD_PPIN_CTL, val | 2UL);
|
|
rdmsrl_safe(MSR_AMD_PPIN_CTL, &val);
|
|
}
|
|
|
|
/* If PPIN_EN bit is 1, return from here; otherwise fall through */
|
|
if (val & 2UL)
|
|
return;
|
|
|
|
clear_ppin:
|
|
clear_cpu_cap(c, X86_FEATURE_AMD_PPIN);
|
|
}
|
|
|
|
u16 amd_get_nb_id(int cpu)
|
|
{
|
|
return per_cpu(cpu_llc_id, cpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(amd_get_nb_id);
|
|
|
|
u32 amd_get_nodes_per_socket(void)
|
|
{
|
|
return nodes_per_socket;
|
|
}
|
|
EXPORT_SYMBOL_GPL(amd_get_nodes_per_socket);
|
|
|
|
static void srat_detect_node(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_NUMA
|
|
int cpu = smp_processor_id();
|
|
int node;
|
|
unsigned apicid = c->apicid;
|
|
|
|
node = numa_cpu_node(cpu);
|
|
if (node == NUMA_NO_NODE)
|
|
node = per_cpu(cpu_llc_id, cpu);
|
|
|
|
/*
|
|
* On multi-fabric platform (e.g. Numascale NumaChip) a
|
|
* platform-specific handler needs to be called to fixup some
|
|
* IDs of the CPU.
|
|
*/
|
|
if (x86_cpuinit.fixup_cpu_id)
|
|
x86_cpuinit.fixup_cpu_id(c, node);
|
|
|
|
if (!node_online(node)) {
|
|
/*
|
|
* Two possibilities here:
|
|
*
|
|
* - The CPU is missing memory and no node was created. In
|
|
* that case try picking one from a nearby CPU.
|
|
*
|
|
* - The APIC IDs differ from the HyperTransport node IDs
|
|
* which the K8 northbridge parsing fills in. Assume
|
|
* they are all increased by a constant offset, but in
|
|
* the same order as the HT nodeids. If that doesn't
|
|
* result in a usable node fall back to the path for the
|
|
* previous case.
|
|
*
|
|
* This workaround operates directly on the mapping between
|
|
* APIC ID and NUMA node, assuming certain relationship
|
|
* between APIC ID, HT node ID and NUMA topology. As going
|
|
* through CPU mapping may alter the outcome, directly
|
|
* access __apicid_to_node[].
|
|
*/
|
|
int ht_nodeid = c->initial_apicid;
|
|
|
|
if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
|
|
node = __apicid_to_node[ht_nodeid];
|
|
/* Pick a nearby node */
|
|
if (!node_online(node))
|
|
node = nearby_node(apicid);
|
|
}
|
|
numa_set_node(cpu, node);
|
|
#endif
|
|
}
|
|
|
|
static void early_init_amd_mc(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
unsigned bits, ecx;
|
|
|
|
/* Multi core CPU? */
|
|
if (c->extended_cpuid_level < 0x80000008)
|
|
return;
|
|
|
|
ecx = cpuid_ecx(0x80000008);
|
|
|
|
c->x86_max_cores = (ecx & 0xff) + 1;
|
|
|
|
/* CPU telling us the core id bits shift? */
|
|
bits = (ecx >> 12) & 0xF;
|
|
|
|
/* Otherwise recompute */
|
|
if (bits == 0) {
|
|
while ((1 << bits) < c->x86_max_cores)
|
|
bits++;
|
|
}
|
|
|
|
c->x86_coreid_bits = bits;
|
|
#endif
|
|
}
|
|
|
|
static void bsp_init_amd(struct cpuinfo_x86 *c)
|
|
{
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (c->x86 >= 0xf) {
|
|
unsigned long long tseg;
|
|
|
|
/*
|
|
* Split up direct mapping around the TSEG SMM area.
|
|
* Don't do it for gbpages because there seems very little
|
|
* benefit in doing so.
|
|
*/
|
|
if (!rdmsrl_safe(MSR_K8_TSEG_ADDR, &tseg)) {
|
|
unsigned long pfn = tseg >> PAGE_SHIFT;
|
|
|
|
pr_debug("tseg: %010llx\n", tseg);
|
|
if (pfn_range_is_mapped(pfn, pfn + 1))
|
|
set_memory_4k((unsigned long)__va(tseg), 1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
|
|
|
|
if (c->x86 > 0x10 ||
|
|
(c->x86 == 0x10 && c->x86_model >= 0x2)) {
|
|
u64 val;
|
|
|
|
rdmsrl(MSR_K7_HWCR, val);
|
|
if (!(val & BIT(24)))
|
|
pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n");
|
|
}
|
|
}
|
|
|
|
if (c->x86 == 0x15) {
|
|
unsigned long upperbit;
|
|
u32 cpuid, assoc;
|
|
|
|
cpuid = cpuid_edx(0x80000005);
|
|
assoc = cpuid >> 16 & 0xff;
|
|
upperbit = ((cpuid >> 24) << 10) / assoc;
|
|
|
|
va_align.mask = (upperbit - 1) & PAGE_MASK;
|
|
va_align.flags = ALIGN_VA_32 | ALIGN_VA_64;
|
|
|
|
/* A random value per boot for bit slice [12:upper_bit) */
|
|
va_align.bits = get_random_int() & va_align.mask;
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_MWAITX))
|
|
use_mwaitx_delay();
|
|
|
|
if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
|
|
u32 ecx;
|
|
|
|
ecx = cpuid_ecx(0x8000001e);
|
|
__max_die_per_package = nodes_per_socket = ((ecx >> 8) & 7) + 1;
|
|
} else if (boot_cpu_has(X86_FEATURE_NODEID_MSR)) {
|
|
u64 value;
|
|
|
|
rdmsrl(MSR_FAM10H_NODE_ID, value);
|
|
__max_die_per_package = nodes_per_socket = ((value >> 3) & 7) + 1;
|
|
}
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) &&
|
|
!boot_cpu_has(X86_FEATURE_VIRT_SSBD) &&
|
|
c->x86 >= 0x15 && c->x86 <= 0x17) {
|
|
unsigned int bit;
|
|
|
|
switch (c->x86) {
|
|
case 0x15: bit = 54; break;
|
|
case 0x16: bit = 33; break;
|
|
case 0x17: bit = 10; break;
|
|
default: return;
|
|
}
|
|
/*
|
|
* Try to cache the base value so further operations can
|
|
* avoid RMW. If that faults, do not enable SSBD.
|
|
*/
|
|
if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) {
|
|
setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD);
|
|
setup_force_cpu_cap(X86_FEATURE_SSBD);
|
|
x86_amd_ls_cfg_ssbd_mask = 1ULL << bit;
|
|
}
|
|
}
|
|
|
|
resctrl_cpu_detect(c);
|
|
}
|
|
|
|
static void early_detect_mem_encrypt(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 msr;
|
|
|
|
/*
|
|
* BIOS support is required for SME and SEV.
|
|
* For SME: If BIOS has enabled SME then adjust x86_phys_bits by
|
|
* the SME physical address space reduction value.
|
|
* If BIOS has not enabled SME then don't advertise the
|
|
* SME feature (set in scattered.c).
|
|
* For SEV: If BIOS has not enabled SEV then don't advertise the
|
|
* SEV and SEV_ES feature (set in scattered.c).
|
|
*
|
|
* In all cases, since support for SME and SEV requires long mode,
|
|
* don't advertise the feature under CONFIG_X86_32.
|
|
*/
|
|
if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) {
|
|
/* Check if memory encryption is enabled */
|
|
rdmsrl(MSR_K8_SYSCFG, msr);
|
|
if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
|
|
goto clear_all;
|
|
|
|
/*
|
|
* Always adjust physical address bits. Even though this
|
|
* will be a value above 32-bits this is still done for
|
|
* CONFIG_X86_32 so that accurate values are reported.
|
|
*/
|
|
c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f;
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32))
|
|
goto clear_all;
|
|
|
|
rdmsrl(MSR_K7_HWCR, msr);
|
|
if (!(msr & MSR_K7_HWCR_SMMLOCK))
|
|
goto clear_sev;
|
|
|
|
return;
|
|
|
|
clear_all:
|
|
setup_clear_cpu_cap(X86_FEATURE_SME);
|
|
clear_sev:
|
|
setup_clear_cpu_cap(X86_FEATURE_SEV);
|
|
setup_clear_cpu_cap(X86_FEATURE_SEV_ES);
|
|
}
|
|
}
|
|
|
|
static void early_init_amd(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 value;
|
|
u32 dummy;
|
|
|
|
early_init_amd_mc(c);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
if (c->x86 == 6)
|
|
set_cpu_cap(c, X86_FEATURE_K7);
|
|
#endif
|
|
|
|
if (c->x86 >= 0xf)
|
|
set_cpu_cap(c, X86_FEATURE_K8);
|
|
|
|
rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy);
|
|
|
|
/*
|
|
* c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
|
|
* with P/T states and does not stop in deep C-states
|
|
*/
|
|
if (c->x86_power & (1 << 8)) {
|
|
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
|
|
set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
|
|
}
|
|
|
|
/* Bit 12 of 8000_0007 edx is accumulated power mechanism. */
|
|
if (c->x86_power & BIT(12))
|
|
set_cpu_cap(c, X86_FEATURE_ACC_POWER);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
set_cpu_cap(c, X86_FEATURE_SYSCALL32);
|
|
#else
|
|
/* Set MTRR capability flag if appropriate */
|
|
if (c->x86 == 5)
|
|
if (c->x86_model == 13 || c->x86_model == 9 ||
|
|
(c->x86_model == 8 && c->x86_stepping >= 8))
|
|
set_cpu_cap(c, X86_FEATURE_K6_MTRR);
|
|
#endif
|
|
#if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI)
|
|
/*
|
|
* ApicID can always be treated as an 8-bit value for AMD APIC versions
|
|
* >= 0x10, but even old K8s came out of reset with version 0x10. So, we
|
|
* can safely set X86_FEATURE_EXTD_APICID unconditionally for families
|
|
* after 16h.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_APIC)) {
|
|
if (c->x86 > 0x16)
|
|
set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
|
|
else if (c->x86 >= 0xf) {
|
|
/* check CPU config space for extended APIC ID */
|
|
unsigned int val;
|
|
|
|
val = read_pci_config(0, 24, 0, 0x68);
|
|
if ((val >> 17 & 0x3) == 0x3)
|
|
set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This is only needed to tell the kernel whether to use VMCALL
|
|
* and VMMCALL. VMMCALL is never executed except under virt, so
|
|
* we can set it unconditionally.
|
|
*/
|
|
set_cpu_cap(c, X86_FEATURE_VMMCALL);
|
|
|
|
/* F16h erratum 793, CVE-2013-6885 */
|
|
if (c->x86 == 0x16 && c->x86_model <= 0xf)
|
|
msr_set_bit(MSR_AMD64_LS_CFG, 15);
|
|
|
|
/*
|
|
* Check whether the machine is affected by erratum 400. This is
|
|
* used to select the proper idle routine and to enable the check
|
|
* whether the machine is affected in arch_post_acpi_init(), which
|
|
* sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
|
|
*/
|
|
if (cpu_has_amd_erratum(c, amd_erratum_400))
|
|
set_cpu_bug(c, X86_BUG_AMD_E400);
|
|
|
|
early_detect_mem_encrypt(c);
|
|
|
|
/* Re-enable TopologyExtensions if switched off by BIOS */
|
|
if (c->x86 == 0x15 &&
|
|
(c->x86_model >= 0x10 && c->x86_model <= 0x6f) &&
|
|
!cpu_has(c, X86_FEATURE_TOPOEXT)) {
|
|
|
|
if (msr_set_bit(0xc0011005, 54) > 0) {
|
|
rdmsrl(0xc0011005, value);
|
|
if (value & BIT_64(54)) {
|
|
set_cpu_cap(c, X86_FEATURE_TOPOEXT);
|
|
pr_info_once(FW_INFO "CPU: Re-enabling disabled Topology Extensions Support.\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_TOPOEXT))
|
|
smp_num_siblings = ((cpuid_ebx(0x8000001e) >> 8) & 0xff) + 1;
|
|
}
|
|
|
|
static void init_amd_k8(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 level;
|
|
u64 value;
|
|
|
|
/* On C+ stepping K8 rep microcode works well for copy/memset */
|
|
level = cpuid_eax(1);
|
|
if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)
|
|
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
|
|
|
|
/*
|
|
* Some BIOSes incorrectly force this feature, but only K8 revision D
|
|
* (model = 0x14) and later actually support it.
|
|
* (AMD Erratum #110, docId: 25759).
|
|
*/
|
|
if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) {
|
|
clear_cpu_cap(c, X86_FEATURE_LAHF_LM);
|
|
if (!rdmsrl_amd_safe(0xc001100d, &value)) {
|
|
value &= ~BIT_64(32);
|
|
wrmsrl_amd_safe(0xc001100d, value);
|
|
}
|
|
}
|
|
|
|
if (!c->x86_model_id[0])
|
|
strcpy(c->x86_model_id, "Hammer");
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Disable TLB flush filter by setting HWCR.FFDIS on K8
|
|
* bit 6 of msr C001_0015
|
|
*
|
|
* Errata 63 for SH-B3 steppings
|
|
* Errata 122 for all steppings (F+ have it disabled by default)
|
|
*/
|
|
msr_set_bit(MSR_K7_HWCR, 6);
|
|
#endif
|
|
set_cpu_bug(c, X86_BUG_SWAPGS_FENCE);
|
|
}
|
|
|
|
static void init_amd_gh(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_MMCONF_FAM10H
|
|
/* do this for boot cpu */
|
|
if (c == &boot_cpu_data)
|
|
check_enable_amd_mmconf_dmi();
|
|
|
|
fam10h_check_enable_mmcfg();
|
|
#endif
|
|
|
|
/*
|
|
* Disable GART TLB Walk Errors on Fam10h. We do this here because this
|
|
* is always needed when GART is enabled, even in a kernel which has no
|
|
* MCE support built in. BIOS should disable GartTlbWlk Errors already.
|
|
* If it doesn't, we do it here as suggested by the BKDG.
|
|
*
|
|
* Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012
|
|
*/
|
|
msr_set_bit(MSR_AMD64_MCx_MASK(4), 10);
|
|
|
|
/*
|
|
* On family 10h BIOS may not have properly enabled WC+ support, causing
|
|
* it to be converted to CD memtype. This may result in performance
|
|
* degradation for certain nested-paging guests. Prevent this conversion
|
|
* by clearing bit 24 in MSR_AMD64_BU_CFG2.
|
|
*
|
|
* NOTE: we want to use the _safe accessors so as not to #GP kvm
|
|
* guests on older kvm hosts.
|
|
*/
|
|
msr_clear_bit(MSR_AMD64_BU_CFG2, 24);
|
|
|
|
if (cpu_has_amd_erratum(c, amd_erratum_383))
|
|
set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH);
|
|
}
|
|
|
|
static void init_amd_ln(struct cpuinfo_x86 *c)
|
|
{
|
|
/*
|
|
* Apply erratum 665 fix unconditionally so machines without a BIOS
|
|
* fix work.
|
|
*/
|
|
msr_set_bit(MSR_AMD64_DE_CFG, 31);
|
|
}
|
|
|
|
static bool rdrand_force;
|
|
|
|
static int __init rdrand_cmdline(char *str)
|
|
{
|
|
if (!str)
|
|
return -EINVAL;
|
|
|
|
if (!strcmp(str, "force"))
|
|
rdrand_force = true;
|
|
else
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
early_param("rdrand", rdrand_cmdline);
|
|
|
|
static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c)
|
|
{
|
|
/*
|
|
* Saving of the MSR used to hide the RDRAND support during
|
|
* suspend/resume is done by arch/x86/power/cpu.c, which is
|
|
* dependent on CONFIG_PM_SLEEP.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_PM_SLEEP))
|
|
return;
|
|
|
|
/*
|
|
* The nordrand option can clear X86_FEATURE_RDRAND, so check for
|
|
* RDRAND support using the CPUID function directly.
|
|
*/
|
|
if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force)
|
|
return;
|
|
|
|
msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62);
|
|
|
|
/*
|
|
* Verify that the CPUID change has occurred in case the kernel is
|
|
* running virtualized and the hypervisor doesn't support the MSR.
|
|
*/
|
|
if (cpuid_ecx(1) & BIT(30)) {
|
|
pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n");
|
|
return;
|
|
}
|
|
|
|
clear_cpu_cap(c, X86_FEATURE_RDRAND);
|
|
pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n");
|
|
}
|
|
|
|
static void init_amd_jg(struct cpuinfo_x86 *c)
|
|
{
|
|
/*
|
|
* Some BIOS implementations do not restore proper RDRAND support
|
|
* across suspend and resume. Check on whether to hide the RDRAND
|
|
* instruction support via CPUID.
|
|
*/
|
|
clear_rdrand_cpuid_bit(c);
|
|
}
|
|
|
|
static void init_amd_bd(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 value;
|
|
|
|
/*
|
|
* The way access filter has a performance penalty on some workloads.
|
|
* Disable it on the affected CPUs.
|
|
*/
|
|
if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) {
|
|
if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) {
|
|
value |= 0x1E;
|
|
wrmsrl_safe(MSR_F15H_IC_CFG, value);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some BIOS implementations do not restore proper RDRAND support
|
|
* across suspend and resume. Check on whether to hide the RDRAND
|
|
* instruction support via CPUID.
|
|
*/
|
|
clear_rdrand_cpuid_bit(c);
|
|
}
|
|
|
|
void init_spectral_chicken(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_CPU_UNRET_ENTRY
|
|
u64 value;
|
|
|
|
/*
|
|
* On Zen2 we offer this chicken (bit) on the altar of Speculation.
|
|
*
|
|
* This suppresses speculation from the middle of a basic block, i.e. it
|
|
* suppresses non-branch predictions.
|
|
*
|
|
* We use STIBP as a heuristic to filter out Zen2 from the rest of F17H
|
|
*/
|
|
if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && cpu_has(c, X86_FEATURE_AMD_STIBP)) {
|
|
if (!rdmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, &value)) {
|
|
value |= MSR_ZEN2_SPECTRAL_CHICKEN_BIT;
|
|
wrmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, value);
|
|
}
|
|
}
|
|
#endif
|
|
/*
|
|
* Work around Erratum 1386. The XSAVES instruction malfunctions in
|
|
* certain circumstances on Zen1/2 uarch, and not all parts have had
|
|
* updated microcode at the time of writing (March 2023).
|
|
*
|
|
* Affected parts all have no supervisor XSAVE states, meaning that
|
|
* the XSAVEC instruction (which works fine) is equivalent.
|
|
*/
|
|
clear_cpu_cap(c, X86_FEATURE_XSAVES);
|
|
}
|
|
|
|
static void init_amd_zn(struct cpuinfo_x86 *c)
|
|
{
|
|
set_cpu_cap(c, X86_FEATURE_ZEN);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
node_reclaim_distance = 32;
|
|
#endif
|
|
|
|
/* Fix up CPUID bits, but only if not virtualised. */
|
|
if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
|
|
|
|
/* Erratum 1076: CPB feature bit not being set in CPUID. */
|
|
if (!cpu_has(c, X86_FEATURE_CPB))
|
|
set_cpu_cap(c, X86_FEATURE_CPB);
|
|
|
|
/*
|
|
* Zen3 (Fam19 model < 0x10) parts are not susceptible to
|
|
* Branch Type Confusion, but predate the allocation of the
|
|
* BTC_NO bit.
|
|
*/
|
|
if (c->x86 == 0x19 && !cpu_has(c, X86_FEATURE_BTC_NO))
|
|
set_cpu_cap(c, X86_FEATURE_BTC_NO);
|
|
}
|
|
}
|
|
|
|
static bool cpu_has_zenbleed_microcode(void)
|
|
{
|
|
u32 good_rev = 0;
|
|
|
|
switch (boot_cpu_data.x86_model) {
|
|
case 0x30 ... 0x3f: good_rev = 0x0830107b; break;
|
|
case 0x60 ... 0x67: good_rev = 0x0860010c; break;
|
|
case 0x68 ... 0x6f: good_rev = 0x08608107; break;
|
|
case 0x70 ... 0x7f: good_rev = 0x08701033; break;
|
|
case 0xa0 ... 0xaf: good_rev = 0x08a00009; break;
|
|
|
|
default:
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
if (boot_cpu_data.microcode < good_rev)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void zenbleed_check(struct cpuinfo_x86 *c)
|
|
{
|
|
if (!cpu_has_amd_erratum(c, amd_zenbleed))
|
|
return;
|
|
|
|
if (cpu_has(c, X86_FEATURE_HYPERVISOR))
|
|
return;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_AVX))
|
|
return;
|
|
|
|
if (!cpu_has_zenbleed_microcode()) {
|
|
pr_notice_once("Zenbleed: please update your microcode for the most optimal fix\n");
|
|
msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
|
|
} else {
|
|
msr_clear_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
|
|
}
|
|
}
|
|
|
|
static void init_amd(struct cpuinfo_x86 *c)
|
|
{
|
|
early_init_amd(c);
|
|
|
|
/*
|
|
* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
|
|
* 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway
|
|
*/
|
|
clear_cpu_cap(c, 0*32+31);
|
|
|
|
if (c->x86 >= 0x10)
|
|
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
|
|
|
|
/* get apicid instead of initial apic id from cpuid */
|
|
c->apicid = hard_smp_processor_id();
|
|
|
|
/* K6s reports MCEs but don't actually have all the MSRs */
|
|
if (c->x86 < 6)
|
|
clear_cpu_cap(c, X86_FEATURE_MCE);
|
|
|
|
switch (c->x86) {
|
|
case 4: init_amd_k5(c); break;
|
|
case 5: init_amd_k6(c); break;
|
|
case 6: init_amd_k7(c); break;
|
|
case 0xf: init_amd_k8(c); break;
|
|
case 0x10: init_amd_gh(c); break;
|
|
case 0x12: init_amd_ln(c); break;
|
|
case 0x15: init_amd_bd(c); break;
|
|
case 0x16: init_amd_jg(c); break;
|
|
case 0x17: init_spectral_chicken(c);
|
|
fallthrough;
|
|
case 0x19: init_amd_zn(c); break;
|
|
}
|
|
|
|
/*
|
|
* Enable workaround for FXSAVE leak on CPUs
|
|
* without a XSaveErPtr feature
|
|
*/
|
|
if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR)))
|
|
set_cpu_bug(c, X86_BUG_FXSAVE_LEAK);
|
|
|
|
cpu_detect_cache_sizes(c);
|
|
|
|
amd_detect_cmp(c);
|
|
amd_get_topology(c);
|
|
srat_detect_node(c);
|
|
amd_detect_ppin(c);
|
|
|
|
init_amd_cacheinfo(c);
|
|
|
|
if (cpu_has(c, X86_FEATURE_XMM2)) {
|
|
/*
|
|
* Use LFENCE for execution serialization. On families which
|
|
* don't have that MSR, LFENCE is already serializing.
|
|
* msr_set_bit() uses the safe accessors, too, even if the MSR
|
|
* is not present.
|
|
*/
|
|
msr_set_bit(MSR_AMD64_DE_CFG,
|
|
MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT);
|
|
|
|
/* A serializing LFENCE stops RDTSC speculation */
|
|
set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
|
|
}
|
|
|
|
/*
|
|
* Family 0x12 and above processors have APIC timer
|
|
* running in deep C states.
|
|
*/
|
|
if (c->x86 > 0x11)
|
|
set_cpu_cap(c, X86_FEATURE_ARAT);
|
|
|
|
/* 3DNow or LM implies PREFETCHW */
|
|
if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH))
|
|
if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM))
|
|
set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH);
|
|
|
|
/* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */
|
|
if (!cpu_has(c, X86_FEATURE_XENPV))
|
|
set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
|
|
|
|
/*
|
|
* Turn on the Instructions Retired free counter on machines not
|
|
* susceptible to erratum #1054 "Instructions Retired Performance
|
|
* Counter May Be Inaccurate".
|
|
*/
|
|
if (cpu_has(c, X86_FEATURE_IRPERF) &&
|
|
!cpu_has_amd_erratum(c, amd_erratum_1054))
|
|
msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT);
|
|
|
|
check_null_seg_clears_base(c);
|
|
|
|
zenbleed_check(c);
|
|
|
|
if (cpu_has_amd_erratum(c, amd_div0)) {
|
|
pr_notice_once("AMD Zen1 DIV0 bug detected. Disable SMT for full protection.\n");
|
|
setup_force_cpu_bug(X86_BUG_DIV0);
|
|
}
|
|
|
|
if (!cpu_has(c, X86_FEATURE_HYPERVISOR) &&
|
|
cpu_has_amd_erratum(c, amd_erratum_1485))
|
|
msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_SHARED_BTB_FIX_BIT);
|
|
|
|
/* AMD CPUs don't need fencing after x2APIC/TSC_DEADLINE MSR writes. */
|
|
clear_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size)
|
|
{
|
|
/* AMD errata T13 (order #21922) */
|
|
if (c->x86 == 6) {
|
|
/* Duron Rev A0 */
|
|
if (c->x86_model == 3 && c->x86_stepping == 0)
|
|
size = 64;
|
|
/* Tbird rev A1/A2 */
|
|
if (c->x86_model == 4 &&
|
|
(c->x86_stepping == 0 || c->x86_stepping == 1))
|
|
size = 256;
|
|
}
|
|
return size;
|
|
}
|
|
#endif
|
|
|
|
static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 ebx, eax, ecx, edx;
|
|
u16 mask = 0xfff;
|
|
|
|
if (c->x86 < 0xf)
|
|
return;
|
|
|
|
if (c->extended_cpuid_level < 0x80000006)
|
|
return;
|
|
|
|
cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
|
|
|
|
tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask;
|
|
tlb_lli_4k[ENTRIES] = ebx & mask;
|
|
|
|
/*
|
|
* K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB
|
|
* characteristics from the CPUID function 0x80000005 instead.
|
|
*/
|
|
if (c->x86 == 0xf) {
|
|
cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
|
|
mask = 0xff;
|
|
}
|
|
|
|
/* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
|
|
if (!((eax >> 16) & mask))
|
|
tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff;
|
|
else
|
|
tlb_lld_2m[ENTRIES] = (eax >> 16) & mask;
|
|
|
|
/* a 4M entry uses two 2M entries */
|
|
tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1;
|
|
|
|
/* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
|
|
if (!(eax & mask)) {
|
|
/* Erratum 658 */
|
|
if (c->x86 == 0x15 && c->x86_model <= 0x1f) {
|
|
tlb_lli_2m[ENTRIES] = 1024;
|
|
} else {
|
|
cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
|
|
tlb_lli_2m[ENTRIES] = eax & 0xff;
|
|
}
|
|
} else
|
|
tlb_lli_2m[ENTRIES] = eax & mask;
|
|
|
|
tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1;
|
|
}
|
|
|
|
static const struct cpu_dev amd_cpu_dev = {
|
|
.c_vendor = "AMD",
|
|
.c_ident = { "AuthenticAMD" },
|
|
#ifdef CONFIG_X86_32
|
|
.legacy_models = {
|
|
{ .family = 4, .model_names =
|
|
{
|
|
[3] = "486 DX/2",
|
|
[7] = "486 DX/2-WB",
|
|
[8] = "486 DX/4",
|
|
[9] = "486 DX/4-WB",
|
|
[14] = "Am5x86-WT",
|
|
[15] = "Am5x86-WB"
|
|
}
|
|
},
|
|
},
|
|
.legacy_cache_size = amd_size_cache,
|
|
#endif
|
|
.c_early_init = early_init_amd,
|
|
.c_detect_tlb = cpu_detect_tlb_amd,
|
|
.c_bsp_init = bsp_init_amd,
|
|
.c_init = init_amd,
|
|
.c_x86_vendor = X86_VENDOR_AMD,
|
|
};
|
|
|
|
cpu_dev_register(amd_cpu_dev);
|
|
|
|
void set_dr_addr_mask(unsigned long mask, int dr)
|
|
{
|
|
if (!boot_cpu_has(X86_FEATURE_BPEXT))
|
|
return;
|
|
|
|
switch (dr) {
|
|
case 0:
|
|
wrmsr(MSR_F16H_DR0_ADDR_MASK, mask, 0);
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
wrmsr(MSR_F16H_DR1_ADDR_MASK - 1 + dr, mask, 0);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool cpu_has_ibpb_brtype_microcode(void)
|
|
{
|
|
switch (boot_cpu_data.x86) {
|
|
/* Zen1/2 IBPB flushes branch type predictions too. */
|
|
case 0x17:
|
|
return boot_cpu_has(X86_FEATURE_AMD_IBPB);
|
|
case 0x19:
|
|
/* Poke the MSR bit on Zen3/4 to check its presence. */
|
|
if (!wrmsrl_safe(MSR_IA32_PRED_CMD, PRED_CMD_SBPB)) {
|
|
setup_force_cpu_cap(X86_FEATURE_SBPB);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static void zenbleed_check_cpu(void *unused)
|
|
{
|
|
struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
|
|
|
|
zenbleed_check(c);
|
|
}
|
|
|
|
void amd_check_microcode(void)
|
|
{
|
|
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
|
|
return;
|
|
|
|
on_each_cpu(zenbleed_check_cpu, NULL, 1);
|
|
}
|
|
|
|
/*
|
|
* Issue a DIV 0/1 insn to clear any division data from previous DIV
|
|
* operations.
|
|
*/
|
|
void noinstr amd_clear_divider(void)
|
|
{
|
|
asm volatile(ALTERNATIVE("", "div %2\n\t", X86_BUG_DIV0)
|
|
:: "a" (0), "d" (0), "r" (1));
|
|
}
|
|
EXPORT_SYMBOL_GPL(amd_clear_divider);
|