kernel_samsung_a53x/drivers/net/wireless/cnss2/power.c
2024-06-15 16:02:09 -03:00

1368 lines
32 KiB
C
Executable file

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2016-2021, The Linux Foundation. All rights reserved. */
#include <linux/clk.h>
#include <linux/delay.h>
#if IS_ENABLED(CONFIG_MSM_QMP)
#include <linux/mailbox/qmp.h>
#endif
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/pinctrl/consumer.h>
#include <linux/regulator/consumer.h>
#if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
#include <soc/qcom/cmd-db.h>
#endif
#include "main.h"
#include "debug.h"
#include "bus.h"
#ifndef CONFIG_SOC_S5E9925
static struct cnss_vreg_cfg cnss_vreg_list[] = {
{"vdd-wlan-core", 1300000, 1300000, 0, 0, 0},
{"vdd-wlan-io", 1800000, 1800000, 0, 0, 0},
{"vdd-wlan-xtal-aon", 0, 0, 0, 0, 0},
{"vdd-wlan-xtal", 1800000, 1800000, 0, 2, 0},
{"vdd-wlan", 0, 0, 0, 0, 0},
{"vdd-wlan-ctrl1", 0, 0, 0, 0, 0},
{"vdd-wlan-ctrl2", 0, 0, 0, 0, 0},
{"vdd-wlan-sp2t", 2700000, 2700000, 0, 0, 0},
{"wlan-ant-switch", 1800000, 1800000, 0, 0, 0},
{"wlan-soc-swreg", 1200000, 1200000, 0, 0, 0},
{"vdd-wlan-aon", 950000, 950000, 0, 0, 0},
{"vdd-wlan-dig", 950000, 952000, 0, 0, 0},
{"vdd-wlan-rfa1", 1900000, 1900000, 0, 0, 0},
{"vdd-wlan-rfa2", 1350000, 1350000, 0, 0, 0},
{"vdd-wlan-en", 0, 0, 0, 10, 0},
};
static struct cnss_clk_cfg cnss_clk_list[] = {
{"rf_clk", 0, 0},
};
#else
static struct cnss_vreg_cfg cnss_vreg_list[] = {
};
static struct cnss_clk_cfg cnss_clk_list[] = {
};
#endif
#define CNSS_VREG_INFO_SIZE ARRAY_SIZE(cnss_vreg_list)
#define CNSS_CLK_INFO_SIZE ARRAY_SIZE(cnss_clk_list)
#define MAX_PROP_SIZE 32
#define BOOTSTRAP_GPIO "qcom,enable-bootstrap-gpio"
#define BOOTSTRAP_ACTIVE "bootstrap_active"
#define WLAN_EN_GPIO "wlan-en-gpio"
#define BT_EN_GPIO "qcom,bt-en-gpio"
#define XO_CLK_GPIO "qcom,xo-clk-gpio"
#define WLAN_EN_ACTIVE "wlan_en_active"
#define WLAN_EN_SLEEP "wlan_en_sleep"
#define WLAN_SW_CTRL_GPIO "wlan-clk-req-gpio"
#define BOOTSTRAP_DELAY 1000
#define WLAN_ENABLE_DELAY 1000
#define TCS_CMD_DATA_ADDR_OFFSET 0x4
#define TCS_OFFSET 0xC8
#define TCS_CMD_OFFSET 0x10
#define MAX_TCS_NUM 8
#define MAX_TCS_CMD_NUM 5
#define BT_CXMX_VOLTAGE_MV 950
#define CNSS_MBOX_MSG_MAX_LEN 64
#define CNSS_MBOX_TIMEOUT_MS 1000
/**
* enum cnss_vreg_param: Voltage regulator TCS param
* @CNSS_VREG_VOLTAGE: Provides voltage level to be configured in TCS
* @CNSS_VREG_MODE: Regulator mode
* @CNSS_VREG_TCS_ENABLE: Set Voltage regulator enable config in TCS
*/
enum cnss_vreg_param {
CNSS_VREG_VOLTAGE,
CNSS_VREG_MODE,
CNSS_VREG_ENABLE,
};
/**
* enum cnss_tcs_seq: TCS sequence ID for trigger
* CNSS_TCS_UP_SEQ: TCS Sequence based on up trigger / Wake TCS
* CNSS_TCS_DOWN_SEQ: TCS Sequence based on down trigger / Sleep TCS
* CNSS_TCS_ALL_SEQ: Update for both up and down triggers
*/
enum cnss_tcs_seq {
CNSS_TCS_UP_SEQ,
CNSS_TCS_DOWN_SEQ,
CNSS_TCS_ALL_SEQ,
};
static int cnss_get_vreg_single(struct cnss_plat_data *plat_priv,
struct cnss_vreg_info *vreg)
{
int ret = 0;
struct device *dev;
struct regulator *reg;
const __be32 *prop;
char prop_name[MAX_PROP_SIZE] = {0};
int len;
dev = &plat_priv->plat_dev->dev;
reg = devm_regulator_get_optional(dev, vreg->cfg.name);
if (IS_ERR(reg)) {
ret = PTR_ERR(reg);
if (ret == -ENODEV)
return ret;
else if (ret == -EPROBE_DEFER)
cnss_pr_info("EPROBE_DEFER for regulator: %s\n",
vreg->cfg.name);
else
cnss_pr_err("Failed to get regulator %s, err = %d\n",
vreg->cfg.name, ret);
return ret;
}
vreg->reg = reg;
snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-config",
vreg->cfg.name);
prop = of_get_property(dev->of_node, prop_name, &len);
if (!prop || len != (5 * sizeof(__be32))) {
cnss_pr_dbg("Property %s %s, use default\n", prop_name,
prop ? "invalid format" : "doesn't exist");
} else {
vreg->cfg.min_uv = be32_to_cpup(&prop[0]);
vreg->cfg.max_uv = be32_to_cpup(&prop[1]);
vreg->cfg.load_ua = be32_to_cpup(&prop[2]);
vreg->cfg.delay_us = be32_to_cpup(&prop[3]);
vreg->cfg.need_unvote = be32_to_cpup(&prop[4]);
}
cnss_pr_dbg("Got regulator: %s, min_uv: %u, max_uv: %u, load_ua: %u, delay_us: %u, need_unvote: %u\n",
vreg->cfg.name, vreg->cfg.min_uv,
vreg->cfg.max_uv, vreg->cfg.load_ua,
vreg->cfg.delay_us, vreg->cfg.need_unvote);
return 0;
}
static void cnss_put_vreg_single(struct cnss_plat_data *plat_priv,
struct cnss_vreg_info *vreg)
{
struct device *dev = &plat_priv->plat_dev->dev;
cnss_pr_dbg("Put regulator: %s\n", vreg->cfg.name);
devm_regulator_put(vreg->reg);
devm_kfree(dev, vreg);
}
static int cnss_vreg_on_single(struct cnss_vreg_info *vreg)
{
int ret = 0;
if (vreg->enabled) {
cnss_pr_dbg("Regulator %s is already enabled\n",
vreg->cfg.name);
return 0;
}
cnss_pr_dbg("Regulator %s is being enabled\n", vreg->cfg.name);
if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
ret = regulator_set_voltage(vreg->reg,
vreg->cfg.min_uv,
vreg->cfg.max_uv);
if (ret) {
cnss_pr_err("Failed to set voltage for regulator %s, min_uv: %u, max_uv: %u, err = %d\n",
vreg->cfg.name, vreg->cfg.min_uv,
vreg->cfg.max_uv, ret);
goto out;
}
}
if (vreg->cfg.load_ua) {
ret = regulator_set_load(vreg->reg,
vreg->cfg.load_ua);
if (ret < 0) {
cnss_pr_err("Failed to set load for regulator %s, load: %u, err = %d\n",
vreg->cfg.name, vreg->cfg.load_ua,
ret);
goto out;
}
}
if (vreg->cfg.delay_us)
udelay(vreg->cfg.delay_us);
ret = regulator_enable(vreg->reg);
if (ret) {
cnss_pr_err("Failed to enable regulator %s, err = %d\n",
vreg->cfg.name, ret);
goto out;
}
vreg->enabled = true;
out:
return ret;
}
static int cnss_vreg_unvote_single(struct cnss_vreg_info *vreg)
{
int ret = 0;
if (!vreg->enabled) {
cnss_pr_dbg("Regulator %s is already disabled\n",
vreg->cfg.name);
return 0;
}
cnss_pr_dbg("Removing vote for Regulator %s\n", vreg->cfg.name);
if (vreg->cfg.load_ua) {
ret = regulator_set_load(vreg->reg, 0);
if (ret < 0)
cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
vreg->cfg.name, ret);
}
if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
ret = regulator_set_voltage(vreg->reg, 0,
vreg->cfg.max_uv);
if (ret)
cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
vreg->cfg.name, ret);
}
return ret;
}
static int cnss_vreg_off_single(struct cnss_vreg_info *vreg)
{
int ret = 0;
if (!vreg->enabled) {
cnss_pr_dbg("Regulator %s is already disabled\n",
vreg->cfg.name);
return 0;
}
cnss_pr_dbg("Regulator %s is being disabled\n",
vreg->cfg.name);
ret = regulator_disable(vreg->reg);
if (ret)
cnss_pr_err("Failed to disable regulator %s, err = %d\n",
vreg->cfg.name, ret);
if (vreg->cfg.load_ua) {
ret = regulator_set_load(vreg->reg, 0);
if (ret < 0)
cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
vreg->cfg.name, ret);
}
if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
ret = regulator_set_voltage(vreg->reg, 0,
vreg->cfg.max_uv);
if (ret)
cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
vreg->cfg.name, ret);
}
vreg->enabled = false;
return ret;
}
static struct cnss_vreg_cfg *get_vreg_list(u32 *vreg_list_size,
enum cnss_vreg_type type)
{
switch (type) {
case CNSS_VREG_PRIM:
*vreg_list_size = CNSS_VREG_INFO_SIZE;
return cnss_vreg_list;
default:
cnss_pr_err("Unsupported vreg type 0x%x\n", type);
*vreg_list_size = 0;
return NULL;
}
}
static int cnss_get_vreg(struct cnss_plat_data *plat_priv,
struct list_head *vreg_list,
struct cnss_vreg_cfg *vreg_cfg,
u32 vreg_list_size)
{
int ret = 0;
int i;
struct cnss_vreg_info *vreg;
struct device *dev = &plat_priv->plat_dev->dev;
if (!list_empty(vreg_list)) {
cnss_pr_dbg("Vregs have already been updated\n");
return 0;
}
for (i = 0; i < vreg_list_size; i++) {
vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
if (!vreg)
return -ENOMEM;
memcpy(&vreg->cfg, &vreg_cfg[i], sizeof(vreg->cfg));
ret = cnss_get_vreg_single(plat_priv, vreg);
if (ret != 0) {
if (ret == -ENODEV) {
devm_kfree(dev, vreg);
continue;
} else {
devm_kfree(dev, vreg);
return ret;
}
}
list_add_tail(&vreg->list, vreg_list);
}
return 0;
}
static void cnss_put_vreg(struct cnss_plat_data *plat_priv,
struct list_head *vreg_list)
{
struct cnss_vreg_info *vreg;
while (!list_empty(vreg_list)) {
vreg = list_first_entry(vreg_list,
struct cnss_vreg_info, list);
list_del(&vreg->list);
if (IS_ERR_OR_NULL(vreg->reg))
continue;
cnss_put_vreg_single(plat_priv, vreg);
}
}
static int cnss_vreg_on(struct cnss_plat_data *plat_priv,
struct list_head *vreg_list)
{
struct cnss_vreg_info *vreg;
int ret = 0;
list_for_each_entry(vreg, vreg_list, list) {
if (IS_ERR_OR_NULL(vreg->reg))
continue;
ret = cnss_vreg_on_single(vreg);
if (ret)
break;
}
if (!ret)
return 0;
list_for_each_entry_continue_reverse(vreg, vreg_list, list) {
if (IS_ERR_OR_NULL(vreg->reg) || !vreg->enabled)
continue;
cnss_vreg_off_single(vreg);
}
return ret;
}
static int cnss_vreg_off(struct cnss_plat_data *plat_priv,
struct list_head *vreg_list)
{
struct cnss_vreg_info *vreg;
list_for_each_entry_reverse(vreg, vreg_list, list) {
if (IS_ERR_OR_NULL(vreg->reg))
continue;
cnss_vreg_off_single(vreg);
}
return 0;
}
static int cnss_vreg_unvote(struct cnss_plat_data *plat_priv,
struct list_head *vreg_list)
{
struct cnss_vreg_info *vreg;
list_for_each_entry_reverse(vreg, vreg_list, list) {
if (IS_ERR_OR_NULL(vreg->reg))
continue;
if (vreg->cfg.need_unvote)
cnss_vreg_unvote_single(vreg);
}
return 0;
}
int cnss_get_vreg_type(struct cnss_plat_data *plat_priv,
enum cnss_vreg_type type)
{
struct cnss_vreg_cfg *vreg_cfg;
u32 vreg_list_size = 0;
int ret = 0;
vreg_cfg = get_vreg_list(&vreg_list_size, type);
if (!vreg_cfg)
return -EINVAL;
switch (type) {
case CNSS_VREG_PRIM:
ret = cnss_get_vreg(plat_priv, &plat_priv->vreg_list,
vreg_cfg, vreg_list_size);
break;
default:
cnss_pr_err("Unsupported vreg type 0x%x\n", type);
return -EINVAL;
}
return ret;
}
void cnss_put_vreg_type(struct cnss_plat_data *plat_priv,
enum cnss_vreg_type type)
{
switch (type) {
case CNSS_VREG_PRIM:
cnss_put_vreg(plat_priv, &plat_priv->vreg_list);
break;
default:
return;
}
}
int cnss_vreg_on_type(struct cnss_plat_data *plat_priv,
enum cnss_vreg_type type)
{
int ret = 0;
switch (type) {
case CNSS_VREG_PRIM:
ret = cnss_vreg_on(plat_priv, &plat_priv->vreg_list);
break;
default:
cnss_pr_err("Unsupported vreg type 0x%x\n", type);
return -EINVAL;
}
return ret;
}
int cnss_vreg_off_type(struct cnss_plat_data *plat_priv,
enum cnss_vreg_type type)
{
int ret = 0;
switch (type) {
case CNSS_VREG_PRIM:
ret = cnss_vreg_off(plat_priv, &plat_priv->vreg_list);
break;
default:
cnss_pr_err("Unsupported vreg type 0x%x\n", type);
return -EINVAL;
}
return ret;
}
int cnss_vreg_unvote_type(struct cnss_plat_data *plat_priv,
enum cnss_vreg_type type)
{
int ret = 0;
switch (type) {
case CNSS_VREG_PRIM:
ret = cnss_vreg_unvote(plat_priv, &plat_priv->vreg_list);
break;
default:
cnss_pr_err("Unsupported vreg type 0x%x\n", type);
return -EINVAL;
}
return ret;
}
static int cnss_get_clk_single(struct cnss_plat_data *plat_priv,
struct cnss_clk_info *clk_info)
{
struct device *dev = &plat_priv->plat_dev->dev;
struct clk *clk;
int ret;
clk = devm_clk_get(dev, clk_info->cfg.name);
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
if (clk_info->cfg.required)
cnss_pr_err("Failed to get clock %s, err = %d\n",
clk_info->cfg.name, ret);
else
cnss_pr_dbg("Failed to get optional clock %s, err = %d\n",
clk_info->cfg.name, ret);
return ret;
}
clk_info->clk = clk;
cnss_pr_dbg("Got clock: %s, freq: %u\n",
clk_info->cfg.name, clk_info->cfg.freq);
return 0;
}
static void cnss_put_clk_single(struct cnss_plat_data *plat_priv,
struct cnss_clk_info *clk_info)
{
struct device *dev = &plat_priv->plat_dev->dev;
cnss_pr_dbg("Put clock: %s\n", clk_info->cfg.name);
devm_clk_put(dev, clk_info->clk);
}
static int cnss_clk_on_single(struct cnss_clk_info *clk_info)
{
int ret;
if (clk_info->enabled) {
cnss_pr_dbg("Clock %s is already enabled\n",
clk_info->cfg.name);
return 0;
}
cnss_pr_dbg("Clock %s is being enabled\n", clk_info->cfg.name);
if (clk_info->cfg.freq) {
ret = clk_set_rate(clk_info->clk, clk_info->cfg.freq);
if (ret) {
cnss_pr_err("Failed to set frequency %u for clock %s, err = %d\n",
clk_info->cfg.freq, clk_info->cfg.name,
ret);
return ret;
}
}
ret = clk_prepare_enable(clk_info->clk);
if (ret) {
cnss_pr_err("Failed to enable clock %s, err = %d\n",
clk_info->cfg.name, ret);
return ret;
}
clk_info->enabled = true;
return 0;
}
static int cnss_clk_off_single(struct cnss_clk_info *clk_info)
{
if (!clk_info->enabled) {
cnss_pr_dbg("Clock %s is already disabled\n",
clk_info->cfg.name);
return 0;
}
cnss_pr_dbg("Clock %s is being disabled\n", clk_info->cfg.name);
clk_disable_unprepare(clk_info->clk);
clk_info->enabled = false;
return 0;
}
int cnss_get_clk(struct cnss_plat_data *plat_priv)
{
struct device *dev;
struct list_head *clk_list;
struct cnss_clk_info *clk_info;
int ret, i;
if (!plat_priv)
return -ENODEV;
dev = &plat_priv->plat_dev->dev;
clk_list = &plat_priv->clk_list;
if (!list_empty(clk_list)) {
cnss_pr_dbg("Clocks have already been updated\n");
return 0;
}
for (i = 0; i < CNSS_CLK_INFO_SIZE; i++) {
clk_info = devm_kzalloc(dev, sizeof(*clk_info), GFP_KERNEL);
if (!clk_info) {
ret = -ENOMEM;
goto cleanup;
}
memcpy(&clk_info->cfg, &cnss_clk_list[i],
sizeof(clk_info->cfg));
ret = cnss_get_clk_single(plat_priv, clk_info);
if (ret != 0) {
if (clk_info->cfg.required) {
devm_kfree(dev, clk_info);
goto cleanup;
} else {
devm_kfree(dev, clk_info);
continue;
}
}
list_add_tail(&clk_info->list, clk_list);
}
return 0;
cleanup:
while (!list_empty(clk_list)) {
clk_info = list_first_entry(clk_list, struct cnss_clk_info,
list);
list_del(&clk_info->list);
if (IS_ERR_OR_NULL(clk_info->clk))
continue;
cnss_put_clk_single(plat_priv, clk_info);
devm_kfree(dev, clk_info);
}
return ret;
}
void cnss_put_clk(struct cnss_plat_data *plat_priv)
{
struct device *dev;
struct list_head *clk_list;
struct cnss_clk_info *clk_info;
if (!plat_priv)
return;
dev = &plat_priv->plat_dev->dev;
clk_list = &plat_priv->clk_list;
while (!list_empty(clk_list)) {
clk_info = list_first_entry(clk_list, struct cnss_clk_info,
list);
list_del(&clk_info->list);
if (IS_ERR_OR_NULL(clk_info->clk))
continue;
cnss_put_clk_single(plat_priv, clk_info);
devm_kfree(dev, clk_info);
}
}
static int cnss_clk_on(struct cnss_plat_data *plat_priv,
struct list_head *clk_list)
{
struct cnss_clk_info *clk_info;
int ret = 0;
list_for_each_entry(clk_info, clk_list, list) {
if (IS_ERR_OR_NULL(clk_info->clk))
continue;
ret = cnss_clk_on_single(clk_info);
if (ret)
break;
}
if (!ret)
return 0;
list_for_each_entry_continue_reverse(clk_info, clk_list, list) {
if (IS_ERR_OR_NULL(clk_info->clk))
continue;
cnss_clk_off_single(clk_info);
}
return ret;
}
static int cnss_clk_off(struct cnss_plat_data *plat_priv,
struct list_head *clk_list)
{
struct cnss_clk_info *clk_info;
list_for_each_entry_reverse(clk_info, clk_list, list) {
if (IS_ERR_OR_NULL(clk_info->clk))
continue;
cnss_clk_off_single(clk_info);
}
return 0;
}
int cnss_get_pinctrl(struct cnss_plat_data *plat_priv)
{
int ret = 0;
struct device *dev;
struct cnss_pinctrl_info *pinctrl_info;
dev = &plat_priv->plat_dev->dev;
pinctrl_info = &plat_priv->pinctrl_info;
pinctrl_info->pinctrl = devm_pinctrl_get(dev);
if (IS_ERR_OR_NULL(pinctrl_info->pinctrl)) {
ret = PTR_ERR(pinctrl_info->pinctrl);
cnss_pr_err("Failed to get pinctrl, err = %d\n", ret);
goto out;
}
if (of_find_property(dev->of_node, BOOTSTRAP_GPIO, NULL)) {
pinctrl_info->bootstrap_active =
pinctrl_lookup_state(pinctrl_info->pinctrl,
BOOTSTRAP_ACTIVE);
if (IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
ret = PTR_ERR(pinctrl_info->bootstrap_active);
cnss_pr_err("Failed to get bootstrap active state, err = %d\n",
ret);
goto out;
}
}
if (of_find_property(dev->of_node, WLAN_EN_GPIO, NULL)) {
pinctrl_info->wlan_en_active =
pinctrl_lookup_state(pinctrl_info->pinctrl,
WLAN_EN_ACTIVE);
if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
ret = PTR_ERR(pinctrl_info->wlan_en_active);
cnss_pr_err("Failed to get wlan_en active state, err = %d\n",
ret);
goto out;
}
pinctrl_info->wlan_en_sleep =
pinctrl_lookup_state(pinctrl_info->pinctrl,
WLAN_EN_SLEEP);
if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
ret = PTR_ERR(pinctrl_info->wlan_en_sleep);
cnss_pr_err("Failed to get wlan_en sleep state, err = %d\n",
ret);
goto out;
}
}
/* Added for QCA6490 PMU delayed WLAN_EN_GPIO */
if (of_find_property(dev->of_node, BT_EN_GPIO, NULL)) {
pinctrl_info->bt_en_gpio = of_get_named_gpio(dev->of_node,
BT_EN_GPIO, 0);
cnss_pr_dbg("BT GPIO: %d\n", pinctrl_info->bt_en_gpio);
} else {
pinctrl_info->bt_en_gpio = -EINVAL;
}
/* Added for QCA6490 to minimize XO CLK selection leakage prevention */
if (of_find_property(dev->of_node, XO_CLK_GPIO, NULL)) {
pinctrl_info->xo_clk_gpio = of_get_named_gpio(dev->of_node,
XO_CLK_GPIO, 0);
cnss_pr_dbg("QCA6490 XO_CLK GPIO: %d\n",
pinctrl_info->xo_clk_gpio);
cnss_set_feature_list(plat_priv, BOOTSTRAP_CLOCK_SELECT_V01);
} else {
pinctrl_info->xo_clk_gpio = -EINVAL;
}
return 0;
out:
return ret;
}
#define CNSS_XO_CLK_RETRY_COUNT_MAX 5
static void cnss_set_xo_clk_gpio_state(struct cnss_plat_data *plat_priv,
bool enable)
{
int xo_clk_gpio = plat_priv->pinctrl_info.xo_clk_gpio, retry = 0, ret;
if (xo_clk_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
return;
retry_gpio_req:
ret = gpio_request(xo_clk_gpio, "XO_CLK_GPIO");
if (ret) {
if (retry++ < CNSS_XO_CLK_RETRY_COUNT_MAX) {
/* wait for ~(10 - 20) ms */
usleep_range(10000, 20000);
goto retry_gpio_req;
}
}
if (ret) {
cnss_pr_err("QCA6490 XO CLK Gpio request failed\n");
return;
}
if (enable) {
gpio_direction_output(xo_clk_gpio, 1);
/*XO CLK must be asserted for some time before WLAN_EN */
usleep_range(100, 200);
} else {
/* Assert XO CLK ~(2-5)ms before off for valid latch in HW */
usleep_range(2000, 5000);
gpio_direction_output(xo_clk_gpio, 0);
}
gpio_free(xo_clk_gpio);
}
static int cnss_select_pinctrl_state(struct cnss_plat_data *plat_priv,
bool state)
{
int ret = 0;
struct cnss_pinctrl_info *pinctrl_info;
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL!\n");
ret = -ENODEV;
goto out;
}
pinctrl_info = &plat_priv->pinctrl_info;
if (state) {
if (!IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
ret = pinctrl_select_state
(pinctrl_info->pinctrl,
pinctrl_info->bootstrap_active);
if (ret) {
cnss_pr_err("Failed to select bootstrap active state, err = %d\n",
ret);
goto out;
}
udelay(BOOTSTRAP_DELAY);
}
cnss_set_xo_clk_gpio_state(plat_priv, true);
if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
ret = pinctrl_select_state
(pinctrl_info->pinctrl,
pinctrl_info->wlan_en_active);
if (ret) {
cnss_pr_err("Failed to select wlan_en active state, err = %d\n",
ret);
goto out;
}
udelay(WLAN_ENABLE_DELAY);
}
cnss_set_xo_clk_gpio_state(plat_priv, false);
} else {
if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
ret = pinctrl_select_state(pinctrl_info->pinctrl,
pinctrl_info->wlan_en_sleep);
if (ret) {
cnss_pr_err("Failed to select wlan_en sleep state, err = %d\n",
ret);
goto out;
}
}
}
cnss_pr_dbg("%s WLAN_EN GPIO successfully\n",
state ? "Assert" : "De-assert");
return 0;
out:
return ret;
}
/**
* cnss_select_pinctrl_enable - select WLAN_GPIO for Active pinctrl status
* @plat_priv: Platform private data structure pointer
*
* For QCA6490, PMU requires minimum 100ms delay between BT_EN_GPIO off and
* WLAN_EN_GPIO on. This is done to avoid power up issues.
*
* Return: Status of pinctrl select operation. 0 - Success.
*/
static int cnss_select_pinctrl_enable(struct cnss_plat_data *plat_priv)
{
int ret = 0, bt_en_gpio = plat_priv->pinctrl_info.bt_en_gpio;
u8 wlan_en_state = 0;
if (bt_en_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
goto set_wlan_en;
if (gpio_get_value(bt_en_gpio)) {
cnss_pr_dbg("BT_EN_GPIO State: On\n");
ret = cnss_select_pinctrl_state(plat_priv, true);
if (!ret)
return ret;
wlan_en_state = 1;
}
if (!gpio_get_value(bt_en_gpio)) {
cnss_pr_dbg("BT_EN_GPIO State: Off. Delay WLAN_GPIO enable\n");
/* check for BT_EN_GPIO down race during above operation */
if (wlan_en_state) {
cnss_pr_dbg("Reset WLAN_EN as BT got turned off during enable\n");
cnss_select_pinctrl_state(plat_priv, false);
wlan_en_state = 0;
}
/* 100 ms delay for BT_EN and WLAN_EN QCA6490 PMU sequencing */
msleep(100);
}
set_wlan_en:
if (!wlan_en_state)
ret = cnss_select_pinctrl_state(plat_priv, true);
return ret;
}
#ifdef CONFIG_SOC_S5E9925
static irqreturn_t cnss_sw_ctrl_wake_handler(int irq, void* plat_priv)
{
cnss_pr_err("clk_req_irq triggered");
return IRQ_HANDLED;
}
int cnss_init_sw_ctrl_gpio(struct cnss_plat_data *plat_priv)
{
int ret = 0;
struct device *dev = &plat_priv->plat_dev->dev;
struct irq_desc *desc;
plat_priv->clk_req_gpio = of_get_named_gpio(dev->of_node,
WLAN_SW_CTRL_GPIO, 0);
if (plat_priv->clk_req_gpio < 0)
goto out;
cnss_pr_err("Get CLK_REQ GPIO (%d) from device node\n",
plat_priv->clk_req_gpio);
ret = gpio_request(plat_priv->clk_req_gpio, WLAN_SW_CTRL_GPIO);
if (ret) {
cnss_pr_err("Failed to request SW_CTRL GPIO, err = %d\n",
ret);
goto out;
}
ret = gpio_direction_input(plat_priv->clk_req_gpio);
if (ret) {
cnss_pr_err("Failed to set GPIO direction SW_CTRL GPIO, err = %d\n",
ret);
goto free_gpio;
}
plat_priv->clk_req_irq = 0;
plat_priv->clk_req_irq = gpio_to_irq(plat_priv->clk_req_gpio);
cnss_pr_err("Get CLK_REQ IRQ (%d)\n",
plat_priv->clk_req_irq);
if (plat_priv->clk_req_irq < 0)
goto free_gpio;
ret = request_irq(plat_priv->clk_req_irq, cnss_sw_ctrl_wake_handler,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"wlan_clk_req_irq", plat_priv);
if (ret) {
cnss_pr_err("Failed to request WLAN_CLK req IRQ, err = %d\n", ret);
goto free_gpio;
}
desc = irq_to_desc(plat_priv->clk_req_irq);
if (desc && desc->depth > 0)
enable_irq(plat_priv->clk_req_irq);
acpm_init_eint_clk_req(plat_priv->clk_req_gpio);
return 0;
free_gpio:
gpio_free(plat_priv->clk_req_gpio);
out:
return ret;
}
#endif
int cnss_power_on_device(struct cnss_plat_data *plat_priv)
{
int ret = 0;
if (plat_priv->powered_on) {
cnss_pr_dbg("Already powered up");
return 0;
}
#ifdef CONFIG_SOC_S5E9925
cnss_pr_err("### enable wlan_vdd\n");
ret = regulator_enable(plat_priv->wlan_vdd);
if (ret) {
cnss_pr_err("Failed to enable wlan_vdd\n");
goto out;
}
#endif
udelay(WLAN_ENABLE_DELAY);
ret = cnss_vreg_on_type(plat_priv, CNSS_VREG_PRIM);
if (ret) {
cnss_pr_err("Failed to turn on vreg, err = %d\n", ret);
goto out;
}
ret = cnss_clk_on(plat_priv, &plat_priv->clk_list);
if (ret) {
cnss_pr_err("Failed to turn on clocks, err = %d\n", ret);
goto vreg_off;
}
ret = cnss_select_pinctrl_enable(plat_priv);
if (ret) {
cnss_pr_err("Failed to select pinctrl state, err = %d\n", ret);
goto clk_off;
}
plat_priv->powered_on = true;
return 0;
clk_off:
cnss_clk_off(plat_priv, &plat_priv->clk_list);
vreg_off:
cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
out:
return ret;
}
void cnss_power_off_device(struct cnss_plat_data *plat_priv)
{
if (!plat_priv->powered_on) {
cnss_pr_dbg("Already powered down");
return;
}
cnss_select_pinctrl_state(plat_priv, false);
cnss_clk_off(plat_priv, &plat_priv->clk_list);
#ifdef CONFIG_SOC_S5E9925
regulator_disable(plat_priv->wlan_vdd);
#endif
cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
plat_priv->powered_on = false;
}
bool cnss_is_device_powered_on(struct cnss_plat_data *plat_priv)
{
return plat_priv->powered_on;
}
void cnss_set_pin_connect_status(struct cnss_plat_data *plat_priv)
{
unsigned long pin_status = 0;
set_bit(CNSS_WLAN_EN, &pin_status);
set_bit(CNSS_PCIE_TXN, &pin_status);
set_bit(CNSS_PCIE_TXP, &pin_status);
set_bit(CNSS_PCIE_RXN, &pin_status);
set_bit(CNSS_PCIE_RXP, &pin_status);
set_bit(CNSS_PCIE_REFCLKN, &pin_status);
set_bit(CNSS_PCIE_REFCLKP, &pin_status);
set_bit(CNSS_PCIE_RST, &pin_status);
plat_priv->pin_result.host_pin_result = pin_status;
}
#if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
{
return cmd_db_ready();
}
static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
const char *res_id)
{
return cmd_db_read_addr(res_id);
}
#else
static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
{
return -EOPNOTSUPP;
}
static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
const char *res_id)
{
return 0;
}
#endif
int cnss_get_tcs_info(struct cnss_plat_data *plat_priv)
{
struct platform_device *plat_dev = plat_priv->plat_dev;
struct resource *res;
resource_size_t addr_len;
void __iomem *tcs_cmd_base_addr;
int ret = 0;
res = platform_get_resource_byname(plat_dev, IORESOURCE_MEM, "tcs_cmd");
if (!res) {
cnss_pr_dbg("TCS CMD address is not present for CPR\n");
goto out;
}
plat_priv->tcs_info.cmd_base_addr = res->start;
addr_len = resource_size(res);
cnss_pr_dbg("TCS CMD base address is %pa with length %pa\n",
&plat_priv->tcs_info.cmd_base_addr, &addr_len);
tcs_cmd_base_addr = devm_ioremap(&plat_dev->dev, res->start, addr_len);
if (!tcs_cmd_base_addr) {
ret = -EINVAL;
cnss_pr_err("Failed to map TCS CMD address, err = %d\n",
ret);
goto out;
}
plat_priv->tcs_info.cmd_base_addr_io = tcs_cmd_base_addr;
return 0;
out:
return ret;
}
int cnss_get_cpr_info(struct cnss_plat_data *plat_priv)
{
struct platform_device *plat_dev = plat_priv->plat_dev;
struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
const char *cmd_db_name;
u32 cpr_pmic_addr = 0;
int ret = 0;
if (plat_priv->tcs_info.cmd_base_addr == 0) {
cnss_pr_dbg("TCS CMD not configured\n");
return 0;
}
ret = of_property_read_string(plat_dev->dev.of_node,
"qcom,cmd_db_name", &cmd_db_name);
if (ret) {
cnss_pr_dbg("CommandDB name is not present for CPR\n");
goto out;
}
ret = cnss_cmd_db_ready(plat_priv);
if (ret) {
cnss_pr_err("CommandDB is not ready, err = %d\n", ret);
goto out;
}
cpr_pmic_addr = cnss_cmd_db_read_addr(plat_priv, cmd_db_name);
if (cpr_pmic_addr > 0) {
cpr_info->cpr_pmic_addr = cpr_pmic_addr;
cnss_pr_dbg("Get CPR PMIC address 0x%x from %s\n",
cpr_info->cpr_pmic_addr, cmd_db_name);
} else {
cnss_pr_err("CPR PMIC address is not available for %s\n",
cmd_db_name);
ret = -EINVAL;
goto out;
}
return 0;
out:
return ret;
}
int cnss_aop_mbox_init(struct cnss_plat_data *plat_priv)
{
struct mbox_client *mbox = &plat_priv->mbox_client_data;
struct mbox_chan *chan;
int ret = 0;
mbox->dev = &plat_priv->plat_dev->dev;
mbox->tx_block = true;
mbox->tx_tout = CNSS_MBOX_TIMEOUT_MS;
mbox->knows_txdone = false;
plat_priv->mbox_chan = NULL;
ret = of_property_read_string(plat_priv->plat_dev->dev.of_node,
"qcom,vreg_ol_cpr",
&plat_priv->vreg_ol_cpr);
if (ret)
cnss_pr_dbg("Vreg for OL CPR not configured\n");
ret = of_property_read_string(plat_priv->plat_dev->dev.of_node,
"qcom,vreg_ipa",
&plat_priv->vreg_ipa);
if (ret)
cnss_pr_dbg("Volt regulator for Int Power Amp not configured\n");
if (!plat_priv->vreg_ol_cpr && !plat_priv->vreg_ipa)
return 0;
chan = mbox_request_channel(mbox, 0);
if (IS_ERR(chan)) {
cnss_pr_err("Failed to get mbox channel\n");
return PTR_ERR(chan);
}
plat_priv->mbox_chan = chan;
cnss_pr_dbg("Mbox channel initialized\n");
return 0;
}
#if IS_ENABLED(CONFIG_MSM_QMP)
static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
const char *vreg_name,
enum cnss_vreg_param param,
enum cnss_tcs_seq seq, int val)
{
struct qmp_pkt pkt;
char mbox_msg[CNSS_MBOX_MSG_MAX_LEN];
static const char * const vreg_param_str[] = {"v", "m", "e"};
static const char *const tcs_seq_str[] = {"upval", "dwnval", "enable"};
int ret = 0;
if (param > CNSS_VREG_ENABLE || seq > CNSS_TCS_ALL_SEQ || !vreg_name)
return -EINVAL;
snprintf(mbox_msg, CNSS_MBOX_MSG_MAX_LEN,
"{class: wlan_pdc, res: %s.%s, %s: %d}", vreg_name,
vreg_param_str[param], tcs_seq_str[seq], val);
cnss_pr_dbg("Sending AOP Mbox msg: %s\n", mbox_msg);
pkt.size = CNSS_MBOX_MSG_MAX_LEN;
pkt.data = mbox_msg;
ret = mbox_send_message(plat_priv->mbox_chan, &pkt);
if (ret < 0)
cnss_pr_err("Failed to send AOP mbox msg: %s\n", mbox_msg);
else
ret = 0;
return ret;
}
#else
static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
const char *vreg_name,
enum cnss_vreg_param param,
enum cnss_tcs_seq seq, int val)
{
return 0;
}
#endif
int cnss_update_cpr_info(struct cnss_plat_data *plat_priv)
{
struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
u32 pmic_addr, voltage = 0, voltage_tmp, offset;
void __iomem *tcs_cmd_addr, *tcs_cmd_data_addr;
int i, j;
if (cpr_info->voltage == 0) {
cnss_pr_err("OL CPR Voltage %dm is not valid\n",
cpr_info->voltage);
return -EINVAL;
}
if (!plat_priv->vreg_ol_cpr || !plat_priv->mbox_chan) {
cnss_pr_dbg("Mbox channel / OL CPR Vreg not configured\n");
} else {
return cnss_aop_set_vreg_param(plat_priv,
plat_priv->vreg_ol_cpr,
CNSS_VREG_VOLTAGE,
CNSS_TCS_UP_SEQ,
cpr_info->voltage);
}
if (plat_priv->tcs_info.cmd_base_addr == 0) {
cnss_pr_dbg("TCS CMD not configured for OL CPR update\n");
return 0;
}
if (cpr_info->cpr_pmic_addr == 0) {
cnss_pr_err("PMIC address 0x%x is not valid\n",
cpr_info->cpr_pmic_addr);
return -EINVAL;
}
if (cpr_info->tcs_cmd_data_addr_io)
goto update_cpr;
for (i = 0; i < MAX_TCS_NUM; i++) {
for (j = 0; j < MAX_TCS_CMD_NUM; j++) {
offset = i * TCS_OFFSET + j * TCS_CMD_OFFSET;
tcs_cmd_addr = plat_priv->tcs_info.cmd_base_addr_io +
offset;
pmic_addr = readl_relaxed(tcs_cmd_addr);
if (pmic_addr == cpr_info->cpr_pmic_addr) {
tcs_cmd_data_addr = tcs_cmd_addr +
TCS_CMD_DATA_ADDR_OFFSET;
voltage_tmp = readl_relaxed(tcs_cmd_data_addr);
cnss_pr_dbg("Got voltage %dmV from i: %d, j: %d\n",
voltage_tmp, i, j);
if (voltage_tmp > voltage) {
voltage = voltage_tmp;
cpr_info->tcs_cmd_data_addr =
plat_priv->tcs_info.cmd_base_addr +
offset + TCS_CMD_DATA_ADDR_OFFSET;
cpr_info->tcs_cmd_data_addr_io =
tcs_cmd_data_addr;
}
}
}
}
if (!cpr_info->tcs_cmd_data_addr_io) {
cnss_pr_err("Failed to find proper TCS CMD data address\n");
return -EINVAL;
}
update_cpr:
cpr_info->voltage = cpr_info->voltage > BT_CXMX_VOLTAGE_MV ?
cpr_info->voltage : BT_CXMX_VOLTAGE_MV;
cnss_pr_dbg("Update TCS CMD data address %pa with voltage %dmV\n",
&cpr_info->tcs_cmd_data_addr, cpr_info->voltage);
writel_relaxed(cpr_info->voltage, cpr_info->tcs_cmd_data_addr_io);
return 0;
}
int cnss_enable_int_pow_amp_vreg(struct cnss_plat_data *plat_priv)
{
struct platform_device *plat_dev = plat_priv->plat_dev;
u32 offset, addr_val, data_val;
void __iomem *tcs_cmd;
int ret;
static bool config_done;
if (plat_priv->device_id != QCA6490_DEVICE_ID)
return -EINVAL;
if (config_done) {
cnss_pr_dbg("IPA Vreg already configured\n");
return 0;
}
if (!plat_priv->vreg_ipa || !plat_priv->mbox_chan) {
cnss_pr_dbg("Mbox channel / IPA Vreg not configured\n");
} else {
ret = cnss_aop_set_vreg_param(plat_priv,
plat_priv->vreg_ipa,
CNSS_VREG_ENABLE,
CNSS_TCS_UP_SEQ, 1);
if (ret == 0)
config_done = true;
return ret;
}
if (!plat_priv->tcs_info.cmd_base_addr_io) {
cnss_pr_err("TCS CMD not configured for IPA Vreg enable\n");
return -EINVAL;
}
ret = of_property_read_u32(plat_dev->dev.of_node,
"qcom,tcs_offset_int_pow_amp_vreg",
&offset);
if (ret) {
cnss_pr_dbg("Internal Power Amp Vreg not configured\n");
return -EINVAL;
}
tcs_cmd = plat_priv->tcs_info.cmd_base_addr_io + offset;
addr_val = readl_relaxed(tcs_cmd);
tcs_cmd += TCS_CMD_DATA_ADDR_OFFSET;
/* 1 = enable Vreg */
writel_relaxed(1, tcs_cmd);
data_val = readl_relaxed(tcs_cmd);
cnss_pr_dbg("Setup S3E TCS Addr: %x Data: %d\n", addr_val, data_val);
config_done = true;
return 0;
}