kernel_samsung_a53x/kernel/sched/cpupri.c
John Stultz 91839ef7d5 ANDROID: sched: Fix off-by-one with cpupri MAX_RT_PRIO evaluation
This patch addresses an issue seen where SCHED_FIFO prio 99
tasks were being woken up on a cpu where a long-running softirq
was executing, and the RT task was not being migrated, causing
long (10+ms wakeup latencies).

Prior to upstream commit 934fc3314b39 ("sched/cpupri: Remap
CPUPRI_NORMAL to MAX_RT_PRIO-1") the task->prio -> cpupri
mapping is a little ackward.

For RT tasks, its calculated as:
  cpupri = MAX_RT_PRIO - prio + 1;

See:
https://android.googlesource.com/kernel/common/+/refs/heads/android13-5.10/kernel/sched/cpupri.c#39

This is added ontop of the also ackward detail that the
task->prio is inverted (RT prio99 -> 0), means the cpupri
mapping for RT tasks goes from 2->101. This makes it easy to
evaluate the cpupri incorrectly.

Which it turns out happened In commit 3adfd8e344ac ("ANDROID:
sched: avoid placing RT threads on cores handling softirqs"):
  3adfd8e344%5E%21/

With the lines:
  int task_pri = convert_prio(p->prio);
  bool drop_nopreempts = task_pri <= MAX_RT_PRIO;

Where the added logic to decide to migrate a rt task off of a
cpu depended on this drop_nopreempts being true.

This works properly for rt tasks from prio 99 to 1, but for the
case of task->prio == 0 (userland rt prio 99 tasks) it breaks,
as the cpupri will be MAX_RT_PRIO - 0 + 1, which then gets
checked as <= MAX_RT_PRIO.

This prevents the cpu from being dropped from the scheduling
set and prevents the rt user prio 99 task from migrating, which
results in high priority rt tasks being left on cpus where long
running softirqs are executing, causing long latencies.

This patch fixes the off by one by changing the evaulation
to MAX_RT_PRIO + 1, so that user-prio 99 tasks will also be
migrated if appropriate.

Luckilly this odd cpupri mapping has been fixed upstream, making
this patch no longer necessary in 5.15 and newer kernels.

Fixes: 3adfd8e344ac ("ANDROID: sched: avoid placing RT threads on cores handling softirqs")
Signed-off-by: John Stultz <jstultz@google.com>
Change-Id: Ia2db7cd461eb4c90f5850b791de1ae95582f7530
(cherry picked from commit bec3b2f002cd13d44e32710315de91e636ecef84)
(cherry picked from commit e8e441d4a2f6b6a316d229f8ff1ebe0f40099817)
(cherry picked from commit 1c1f38f1e1fa82e09e0e3f6f941ca81127682ec3)
2024-12-18 15:01:04 +01:00

348 lines
9.5 KiB
C
Executable file

// SPDX-License-Identifier: GPL-2.0-only
/*
* kernel/sched/cpupri.c
*
* CPU priority management
*
* Copyright (C) 2007-2008 Novell
*
* Author: Gregory Haskins <ghaskins@novell.com>
*
* This code tracks the priority of each CPU so that global migration
* decisions are easy to calculate. Each CPU can be in a state as follows:
*
* (INVALID), IDLE, NORMAL, RT1, ... RT99
*
* going from the lowest priority to the highest. CPUs in the INVALID state
* are not eligible for routing. The system maintains this state with
* a 2 dimensional bitmap (the first for priority class, the second for CPUs
* in that class). Therefore a typical application without affinity
* restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
* searches). For tasks with affinity restrictions, the algorithm has a
* worst case complexity of O(min(102, nr_domcpus)), though the scenario that
* yields the worst case search is fairly contrived.
*/
#include "sched.h"
/* Convert between a 140 based task->prio, and our 102 based cpupri */
static int convert_prio(int prio)
{
int cpupri;
if (prio == CPUPRI_INVALID)
cpupri = CPUPRI_INVALID;
else if (prio == MAX_PRIO)
cpupri = CPUPRI_IDLE;
else if (prio >= MAX_RT_PRIO)
cpupri = CPUPRI_NORMAL;
else
cpupri = MAX_RT_PRIO - prio + 1;
return cpupri;
}
#ifdef CONFIG_RT_SOFTINT_OPTIMIZATION
/**
* drop_nopreempt_cpus - remove likely nonpreemptible cpus from the mask
* @lowest_mask: mask with selected CPUs (non-NULL)
*/
static void
drop_nopreempt_cpus(struct cpumask *lowest_mask)
{
unsigned int cpu = cpumask_first(lowest_mask);
while (cpu < nr_cpu_ids) {
/* unlocked access */
struct task_struct *task = READ_ONCE(cpu_rq(cpu)->curr);
if (task_may_not_preempt(task, cpu)) {
cpumask_clear_cpu(cpu, lowest_mask);
}
cpu = cpumask_next(cpu, lowest_mask);
}
}
#endif
static inline int __cpupri_find(struct cpupri *cp, struct task_struct *p,
struct cpumask *lowest_mask, int idx,
bool drop_nopreempts)
{
struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
int skip = 0;
if (!atomic_read(&(vec)->count))
skip = 1;
/*
* When looking at the vector, we need to read the counter,
* do a memory barrier, then read the mask.
*
* Note: This is still all racey, but we can deal with it.
* Ideally, we only want to look at masks that are set.
*
* If a mask is not set, then the only thing wrong is that we
* did a little more work than necessary.
*
* If we read a zero count but the mask is set, because of the
* memory barriers, that can only happen when the highest prio
* task for a run queue has left the run queue, in which case,
* it will be followed by a pull. If the task we are processing
* fails to find a proper place to go, that pull request will
* pull this task if the run queue is running at a lower
* priority.
*/
smp_rmb();
/* Need to do the rmb for every iteration */
if (skip)
return 0;
if (cpumask_any_and(p->cpus_ptr, vec->mask) >= nr_cpu_ids)
return 0;
if (lowest_mask) {
cpumask_and(lowest_mask, p->cpus_ptr, vec->mask);
cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
#ifdef CONFIG_RT_SOFTINT_OPTIMIZATION
if (drop_nopreempts)
drop_nopreempt_cpus(lowest_mask);
#endif
/*
* We have to ensure that we have at least one bit
* still set in the array, since the map could have
* been concurrently emptied between the first and
* second reads of vec->mask. If we hit this
* condition, simply act as though we never hit this
* priority level and continue on.
*/
if (cpumask_empty(lowest_mask))
return 0;
}
return 1;
}
int cpupri_find(struct cpupri *cp, struct task_struct *p,
struct cpumask *lowest_mask)
{
return cpupri_find_fitness(cp, p, lowest_mask, NULL);
}
/**
* cpupri_find_fitness - find the best (lowest-pri) CPU in the system
* @cp: The cpupri context
* @p: The task
* @lowest_mask: A mask to fill in with selected CPUs (or NULL)
* @fitness_fn: A pointer to a function to do custom checks whether the CPU
* fits a specific criteria so that we only return those CPUs.
*
* Note: This function returns the recommended CPUs as calculated during the
* current invocation. By the time the call returns, the CPUs may have in
* fact changed priorities any number of times. While not ideal, it is not
* an issue of correctness since the normal rebalancer logic will correct
* any discrepancies created by racing against the uncertainty of the current
* priority configuration.
*
* Return: (int)bool - CPUs were found
*/
int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p,
struct cpumask *lowest_mask,
bool (*fitness_fn)(struct task_struct *p, int cpu))
{
int task_pri = convert_prio(p->prio);
int idx, cpu;
bool drop_nopreempts = task_pri <= MAX_RT_PRIO + 1;
BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES);
#ifdef CONFIG_RT_SOFTINT_OPTIMIZATION
retry:
#endif
for (idx = 0; idx < task_pri; idx++) {
if (!__cpupri_find(cp, p, lowest_mask, idx, drop_nopreempts))
continue;
if (!lowest_mask || !fitness_fn)
return 1;
/* Ensure the capacity of the CPUs fit the task */
for_each_cpu(cpu, lowest_mask) {
if (!fitness_fn(p, cpu))
cpumask_clear_cpu(cpu, lowest_mask);
}
/*
* If no CPU at the current priority can fit the task
* continue looking
*/
if (cpumask_empty(lowest_mask))
continue;
return 1;
}
/*
* If we can't find any non-preemptible cpu's, retry so we can
* find the lowest priority target and avoid priority inversion.
*/
#ifdef CONFIG_RT_SOFTINT_OPTIMIZATION
if (drop_nopreempts) {
drop_nopreempts = false;
goto retry;
}
#endif
/*
* If we failed to find a fitting lowest_mask, kick off a new search
* but without taking into account any fitness criteria this time.
*
* This rule favours honouring priority over fitting the task in the
* correct CPU (Capacity Awareness being the only user now).
* The idea is that if a higher priority task can run, then it should
* run even if this ends up being on unfitting CPU.
*
* The cost of this trade-off is not entirely clear and will probably
* be good for some workloads and bad for others.
*
* The main idea here is that if some CPUs were overcommitted, we try
* to spread which is what the scheduler traditionally did. Sys admins
* must do proper RT planning to avoid overloading the system if they
* really care.
*/
if (fitness_fn)
return cpupri_find(cp, p, lowest_mask);
return 0;
}
EXPORT_SYMBOL_GPL(cpupri_find_fitness);
/**
* cpupri_set - update the CPU priority setting
* @cp: The cpupri context
* @cpu: The target CPU
* @newpri: The priority (INVALID-RT99) to assign to this CPU
*
* Note: Assumes cpu_rq(cpu)->lock is locked
*
* Returns: (void)
*/
void cpupri_set(struct cpupri *cp, int cpu, int newpri)
{
int *currpri = &cp->cpu_to_pri[cpu];
int oldpri = *currpri;
int do_mb = 0;
newpri = convert_prio(newpri);
BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
if (newpri == oldpri)
return;
/*
* If the CPU was currently mapped to a different value, we
* need to map it to the new value then remove the old value.
* Note, we must add the new value first, otherwise we risk the
* cpu being missed by the priority loop in cpupri_find.
*/
if (likely(newpri != CPUPRI_INVALID)) {
struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
cpumask_set_cpu(cpu, vec->mask);
/*
* When adding a new vector, we update the mask first,
* do a write memory barrier, and then update the count, to
* make sure the vector is visible when count is set.
*/
smp_mb__before_atomic();
atomic_inc(&(vec)->count);
do_mb = 1;
}
if (likely(oldpri != CPUPRI_INVALID)) {
struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
/*
* Because the order of modification of the vec->count
* is important, we must make sure that the update
* of the new prio is seen before we decrement the
* old prio. This makes sure that the loop sees
* one or the other when we raise the priority of
* the run queue. We don't care about when we lower the
* priority, as that will trigger an rt pull anyway.
*
* We only need to do a memory barrier if we updated
* the new priority vec.
*/
if (do_mb)
smp_mb__after_atomic();
/*
* When removing from the vector, we decrement the counter first
* do a memory barrier and then clear the mask.
*/
atomic_dec(&(vec)->count);
smp_mb__after_atomic();
cpumask_clear_cpu(cpu, vec->mask);
}
*currpri = newpri;
}
/**
* cpupri_init - initialize the cpupri structure
* @cp: The cpupri context
*
* Return: -ENOMEM on memory allocation failure.
*/
int cpupri_init(struct cpupri *cp)
{
int i;
for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
struct cpupri_vec *vec = &cp->pri_to_cpu[i];
atomic_set(&vec->count, 0);
if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
goto cleanup;
}
cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL);
if (!cp->cpu_to_pri)
goto cleanup;
for_each_possible_cpu(i)
cp->cpu_to_pri[i] = CPUPRI_INVALID;
return 0;
cleanup:
for (i--; i >= 0; i--)
free_cpumask_var(cp->pri_to_cpu[i].mask);
return -ENOMEM;
}
/**
* cpupri_cleanup - clean up the cpupri structure
* @cp: The cpupri context
*/
void cpupri_cleanup(struct cpupri *cp)
{
int i;
kfree(cp->cpu_to_pri);
for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
free_cpumask_var(cp->pri_to_cpu[i].mask);
}
#ifdef CONFIG_RT_SOFTINT_OPTIMIZATION
/*
* cpupri_check_rt - check if CPU has a RT task
* should be called from rcu-sched read section.
*/
bool cpupri_check_rt(void)
{
int cpu = raw_smp_processor_id();
return cpu_rq(cpu)->rd->cpupri.cpu_to_pri[cpu] > CPUPRI_NORMAL;
}
#endif