b77b9c6142
[ Upstream commit 2f7a04c7b03b7fd63b7618e29295fc25732faac1 ] We're currently doing accounting on the queue sync with an atomic variable that counts down the number of remaining notifications that we still need. As we've been hitting issues in this area, modify this to track a bitmap of queues, not just the number of queues, and print out the remaining bitmap in the warning. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: Luca Coelho <luciano.coelho@intel.com> Link: https://lore.kernel.org/r/iwlwifi.20201209231352.0a3fa177cd6b.I7c69ff999419368266279ec27dd618eb450908b3@changeid Signed-off-by: Luca Coelho <luciano.coelho@intel.com> Stable-dep-of: 5f8a3561ea8b ("iwlwifi: mvm: write queue_sync_state only for sync") Signed-off-by: Sasha Levin <sashal@kernel.org>
2155 lines
68 KiB
C
Executable file
2155 lines
68 KiB
C
Executable file
/******************************************************************************
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
|
|
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
|
|
* Copyright(c) 2015 - 2017 Intel Deutschland GmbH
|
|
* Copyright(c) 2018 - 2020 Intel Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* The full GNU General Public License is included in this distribution
|
|
* in the file called COPYING.
|
|
*
|
|
* Contact Information:
|
|
* Intel Linux Wireless <linuxwifi@intel.com>
|
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
|
|
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
|
|
* Copyright(c) 2015 - 2017 Intel Deutschland GmbH
|
|
* Copyright(c) 2018 - 2020 Intel Corporation
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include "iwl-trans.h"
|
|
#include "mvm.h"
|
|
#include "fw-api.h"
|
|
|
|
static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
|
|
u8 *data = skb->data;
|
|
|
|
/* Alignment concerns */
|
|
BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
|
|
BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
|
|
BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
|
|
BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
|
|
|
|
if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
|
|
data += sizeof(struct ieee80211_radiotap_he);
|
|
if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
|
|
data += sizeof(struct ieee80211_radiotap_he_mu);
|
|
if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
|
|
data += sizeof(struct ieee80211_radiotap_lsig);
|
|
if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
|
|
struct ieee80211_vendor_radiotap *radiotap = (void *)data;
|
|
|
|
data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
|
|
int queue, struct ieee80211_sta *sta)
|
|
{
|
|
struct iwl_mvm_sta *mvmsta;
|
|
struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
|
|
struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
|
|
struct iwl_mvm_key_pn *ptk_pn;
|
|
int res;
|
|
u8 tid, keyidx;
|
|
u8 pn[IEEE80211_CCMP_PN_LEN];
|
|
u8 *extiv;
|
|
|
|
/* do PN checking */
|
|
|
|
/* multicast and non-data only arrives on default queue */
|
|
if (!ieee80211_is_data(hdr->frame_control) ||
|
|
is_multicast_ether_addr(hdr->addr1))
|
|
return 0;
|
|
|
|
/* do not check PN for open AP */
|
|
if (!(stats->flag & RX_FLAG_DECRYPTED))
|
|
return 0;
|
|
|
|
/*
|
|
* avoid checking for default queue - we don't want to replicate
|
|
* all the logic that's necessary for checking the PN on fragmented
|
|
* frames, leave that to mac80211
|
|
*/
|
|
if (queue == 0)
|
|
return 0;
|
|
|
|
/* if we are here - this for sure is either CCMP or GCMP */
|
|
if (IS_ERR_OR_NULL(sta)) {
|
|
IWL_ERR(mvm,
|
|
"expected hw-decrypted unicast frame for station\n");
|
|
return -1;
|
|
}
|
|
|
|
mvmsta = iwl_mvm_sta_from_mac80211(sta);
|
|
|
|
extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
|
|
keyidx = extiv[3] >> 6;
|
|
|
|
ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
|
|
if (!ptk_pn)
|
|
return -1;
|
|
|
|
if (ieee80211_is_data_qos(hdr->frame_control))
|
|
tid = ieee80211_get_tid(hdr);
|
|
else
|
|
tid = 0;
|
|
|
|
/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
|
|
if (tid >= IWL_MAX_TID_COUNT)
|
|
return -1;
|
|
|
|
/* load pn */
|
|
pn[0] = extiv[7];
|
|
pn[1] = extiv[6];
|
|
pn[2] = extiv[5];
|
|
pn[3] = extiv[4];
|
|
pn[4] = extiv[1];
|
|
pn[5] = extiv[0];
|
|
|
|
res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
|
|
if (res < 0)
|
|
return -1;
|
|
if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
|
|
return -1;
|
|
|
|
memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
|
|
stats->flag |= RX_FLAG_PN_VALIDATED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* iwl_mvm_create_skb Adds the rxb to a new skb */
|
|
static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
|
|
struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
|
|
struct iwl_rx_cmd_buffer *rxb)
|
|
{
|
|
struct iwl_rx_packet *pkt = rxb_addr(rxb);
|
|
struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
|
|
unsigned int headlen, fraglen, pad_len = 0;
|
|
unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
|
|
u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
|
|
IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
|
|
|
|
if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
|
|
len -= 2;
|
|
pad_len = 2;
|
|
}
|
|
|
|
/*
|
|
* For non monitor interface strip the bytes the RADA might not have
|
|
* removed. As monitor interface cannot exist with other interfaces
|
|
* this removal is safe.
|
|
*/
|
|
if (mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) {
|
|
u32 pkt_flags = le32_to_cpu(pkt->len_n_flags);
|
|
|
|
/*
|
|
* If RADA was not enabled then decryption was not performed so
|
|
* the MIC cannot be removed.
|
|
*/
|
|
if (!(pkt_flags & FH_RSCSR_RADA_EN)) {
|
|
if (WARN_ON(crypt_len > mic_crc_len))
|
|
return -EINVAL;
|
|
|
|
mic_crc_len -= crypt_len;
|
|
}
|
|
|
|
if (WARN_ON(mic_crc_len > len))
|
|
return -EINVAL;
|
|
|
|
len -= mic_crc_len;
|
|
}
|
|
|
|
/* If frame is small enough to fit in skb->head, pull it completely.
|
|
* If not, only pull ieee80211_hdr (including crypto if present, and
|
|
* an additional 8 bytes for SNAP/ethertype, see below) so that
|
|
* splice() or TCP coalesce are more efficient.
|
|
*
|
|
* Since, in addition, ieee80211_data_to_8023() always pull in at
|
|
* least 8 bytes (possibly more for mesh) we can do the same here
|
|
* to save the cost of doing it later. That still doesn't pull in
|
|
* the actual IP header since the typical case has a SNAP header.
|
|
* If the latter changes (there are efforts in the standards group
|
|
* to do so) we should revisit this and ieee80211_data_to_8023().
|
|
*/
|
|
headlen = (len <= skb_tailroom(skb)) ? len :
|
|
hdrlen + crypt_len + 8;
|
|
|
|
/* The firmware may align the packet to DWORD.
|
|
* The padding is inserted after the IV.
|
|
* After copying the header + IV skip the padding if
|
|
* present before copying packet data.
|
|
*/
|
|
hdrlen += crypt_len;
|
|
|
|
if (WARN_ONCE(headlen < hdrlen,
|
|
"invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
|
|
hdrlen, len, crypt_len)) {
|
|
/*
|
|
* We warn and trace because we want to be able to see
|
|
* it in trace-cmd as well.
|
|
*/
|
|
IWL_DEBUG_RX(mvm,
|
|
"invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
|
|
hdrlen, len, crypt_len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
skb_put_data(skb, hdr, hdrlen);
|
|
skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
|
|
|
|
/*
|
|
* If we did CHECKSUM_COMPLETE, the hardware only does it right for
|
|
* certain cases and starts the checksum after the SNAP. Check if
|
|
* this is the case - it's easier to just bail out to CHECKSUM_NONE
|
|
* in the cases the hardware didn't handle, since it's rare to see
|
|
* such packets, even though the hardware did calculate the checksum
|
|
* in this case, just starting after the MAC header instead.
|
|
*/
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE) {
|
|
struct {
|
|
u8 hdr[6];
|
|
__be16 type;
|
|
} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
|
|
|
|
if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
|
|
!ether_addr_equal(shdr->hdr, rfc1042_header) ||
|
|
(shdr->type != htons(ETH_P_IP) &&
|
|
shdr->type != htons(ETH_P_ARP) &&
|
|
shdr->type != htons(ETH_P_IPV6) &&
|
|
shdr->type != htons(ETH_P_8021Q) &&
|
|
shdr->type != htons(ETH_P_PAE) &&
|
|
shdr->type != htons(ETH_P_TDLS))))
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
}
|
|
|
|
fraglen = len - headlen;
|
|
|
|
if (fraglen) {
|
|
int offset = (void *)hdr + headlen + pad_len -
|
|
rxb_addr(rxb) + rxb_offset(rxb);
|
|
|
|
skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
|
|
fraglen, rxb->truesize);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_vendor_radiotap *radiotap;
|
|
const int size = sizeof(*radiotap) + sizeof(__le16);
|
|
|
|
if (!mvm->cur_aid)
|
|
return;
|
|
|
|
/* ensure alignment */
|
|
BUILD_BUG_ON((size + 2) % 4);
|
|
|
|
radiotap = skb_put(skb, size + 2);
|
|
radiotap->align = 1;
|
|
/* Intel OUI */
|
|
radiotap->oui[0] = 0xf6;
|
|
radiotap->oui[1] = 0x54;
|
|
radiotap->oui[2] = 0x25;
|
|
/* radiotap sniffer config sub-namespace */
|
|
radiotap->subns = 1;
|
|
radiotap->present = 0x1;
|
|
radiotap->len = size - sizeof(*radiotap);
|
|
radiotap->pad = 2;
|
|
|
|
/* fill the data now */
|
|
memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
|
|
/* and clear the padding */
|
|
memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
|
|
|
|
rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
|
|
}
|
|
|
|
/* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
|
|
static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
|
|
struct napi_struct *napi,
|
|
struct sk_buff *skb, int queue,
|
|
struct ieee80211_sta *sta,
|
|
bool csi)
|
|
{
|
|
if (iwl_mvm_check_pn(mvm, skb, queue, sta))
|
|
kfree_skb(skb);
|
|
else
|
|
ieee80211_rx_napi(mvm->hw, sta, skb, napi);
|
|
}
|
|
|
|
static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
|
|
struct ieee80211_rx_status *rx_status,
|
|
u32 rate_n_flags, int energy_a,
|
|
int energy_b)
|
|
{
|
|
int max_energy;
|
|
u32 rate_flags = rate_n_flags;
|
|
|
|
energy_a = energy_a ? -energy_a : S8_MIN;
|
|
energy_b = energy_b ? -energy_b : S8_MIN;
|
|
max_energy = max(energy_a, energy_b);
|
|
|
|
IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
|
|
energy_a, energy_b, max_energy);
|
|
|
|
rx_status->signal = max_energy;
|
|
rx_status->chains =
|
|
(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
|
|
rx_status->chain_signal[0] = energy_a;
|
|
rx_status->chain_signal[1] = energy_b;
|
|
rx_status->chain_signal[2] = S8_MIN;
|
|
}
|
|
|
|
static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr,
|
|
struct ieee80211_rx_status *stats, u16 phy_info,
|
|
struct iwl_rx_mpdu_desc *desc,
|
|
u32 pkt_flags, int queue, u8 *crypt_len)
|
|
{
|
|
u32 status = le32_to_cpu(desc->status);
|
|
|
|
/*
|
|
* Drop UNKNOWN frames in aggregation, unless in monitor mode
|
|
* (where we don't have the keys).
|
|
* We limit this to aggregation because in TKIP this is a valid
|
|
* scenario, since we may not have the (correct) TTAK (phase 1
|
|
* key) in the firmware.
|
|
*/
|
|
if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
|
|
(status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
|
|
IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
|
|
return -1;
|
|
|
|
if (!ieee80211_has_protected(hdr->frame_control) ||
|
|
(status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
|
|
IWL_RX_MPDU_STATUS_SEC_NONE)
|
|
return 0;
|
|
|
|
/* TODO: handle packets encrypted with unknown alg */
|
|
|
|
switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
|
|
case IWL_RX_MPDU_STATUS_SEC_CCM:
|
|
case IWL_RX_MPDU_STATUS_SEC_GCM:
|
|
BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
|
|
/* alg is CCM: check MIC only */
|
|
if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
|
|
return -1;
|
|
|
|
stats->flag |= RX_FLAG_DECRYPTED;
|
|
if (pkt_flags & FH_RSCSR_RADA_EN)
|
|
stats->flag |= RX_FLAG_MIC_STRIPPED;
|
|
*crypt_len = IEEE80211_CCMP_HDR_LEN;
|
|
return 0;
|
|
case IWL_RX_MPDU_STATUS_SEC_TKIP:
|
|
/* Don't drop the frame and decrypt it in SW */
|
|
if (!fw_has_api(&mvm->fw->ucode_capa,
|
|
IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
|
|
!(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
|
|
return 0;
|
|
|
|
if (mvm->trans->trans_cfg->gen2 &&
|
|
!(status & RX_MPDU_RES_STATUS_MIC_OK))
|
|
stats->flag |= RX_FLAG_MMIC_ERROR;
|
|
|
|
*crypt_len = IEEE80211_TKIP_IV_LEN;
|
|
/* fall through */
|
|
case IWL_RX_MPDU_STATUS_SEC_WEP:
|
|
if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
|
|
return -1;
|
|
|
|
stats->flag |= RX_FLAG_DECRYPTED;
|
|
if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
|
|
IWL_RX_MPDU_STATUS_SEC_WEP)
|
|
*crypt_len = IEEE80211_WEP_IV_LEN;
|
|
|
|
if (pkt_flags & FH_RSCSR_RADA_EN) {
|
|
stats->flag |= RX_FLAG_ICV_STRIPPED;
|
|
if (mvm->trans->trans_cfg->gen2)
|
|
stats->flag |= RX_FLAG_MMIC_STRIPPED;
|
|
}
|
|
|
|
return 0;
|
|
case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
|
|
if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
|
|
return -1;
|
|
stats->flag |= RX_FLAG_DECRYPTED;
|
|
return 0;
|
|
default:
|
|
/*
|
|
* Sometimes we can get frames that were not decrypted
|
|
* because the firmware didn't have the keys yet. This can
|
|
* happen after connection where we can get multicast frames
|
|
* before the GTK is installed.
|
|
* Silently drop those frames.
|
|
* Also drop un-decrypted frames in monitor mode.
|
|
*/
|
|
if (!is_multicast_ether_addr(hdr->addr1) &&
|
|
!mvm->monitor_on && net_ratelimit())
|
|
IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
|
|
struct ieee80211_sta *sta,
|
|
struct sk_buff *skb,
|
|
struct iwl_rx_packet *pkt)
|
|
{
|
|
struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
|
|
|
|
if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
|
|
if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
|
|
u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
|
|
|
|
skb->ip_summed = CHECKSUM_COMPLETE;
|
|
skb->csum = csum_unfold(~(__force __sum16)hwsum);
|
|
}
|
|
} else {
|
|
struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
|
|
struct iwl_mvm_vif *mvmvif;
|
|
u16 flags = le16_to_cpu(desc->l3l4_flags);
|
|
u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
|
|
IWL_RX_L3_PROTO_POS);
|
|
|
|
mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
|
|
|
|
if (mvmvif->features & NETIF_F_RXCSUM &&
|
|
flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
|
|
(flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
|
|
l3_prot == IWL_RX_L3_TYPE_IPV6 ||
|
|
l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* returns true if a packet is a duplicate and should be dropped.
|
|
* Updates AMSDU PN tracking info
|
|
*/
|
|
static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
|
|
struct ieee80211_rx_status *rx_status,
|
|
struct ieee80211_hdr *hdr,
|
|
struct iwl_rx_mpdu_desc *desc)
|
|
{
|
|
struct iwl_mvm_sta *mvm_sta;
|
|
struct iwl_mvm_rxq_dup_data *dup_data;
|
|
u8 tid, sub_frame_idx;
|
|
|
|
if (WARN_ON(IS_ERR_OR_NULL(sta)))
|
|
return false;
|
|
|
|
mvm_sta = iwl_mvm_sta_from_mac80211(sta);
|
|
dup_data = &mvm_sta->dup_data[queue];
|
|
|
|
/*
|
|
* Drop duplicate 802.11 retransmissions
|
|
* (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
|
|
*/
|
|
if (ieee80211_is_ctl(hdr->frame_control) ||
|
|
ieee80211_is_qos_nullfunc(hdr->frame_control) ||
|
|
is_multicast_ether_addr(hdr->addr1)) {
|
|
rx_status->flag |= RX_FLAG_DUP_VALIDATED;
|
|
return false;
|
|
}
|
|
|
|
if (ieee80211_is_data_qos(hdr->frame_control))
|
|
/* frame has qos control */
|
|
tid = ieee80211_get_tid(hdr);
|
|
else
|
|
tid = IWL_MAX_TID_COUNT;
|
|
|
|
/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
|
|
sub_frame_idx = desc->amsdu_info &
|
|
IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
|
|
|
|
if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
|
|
dup_data->last_seq[tid] == hdr->seq_ctrl &&
|
|
dup_data->last_sub_frame[tid] >= sub_frame_idx))
|
|
return true;
|
|
|
|
/* Allow same PN as the first subframe for following sub frames */
|
|
if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
|
|
sub_frame_idx > dup_data->last_sub_frame[tid] &&
|
|
desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
|
|
rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
|
|
|
|
dup_data->last_seq[tid] = hdr->seq_ctrl;
|
|
dup_data->last_sub_frame[tid] = sub_frame_idx;
|
|
|
|
rx_status->flag |= RX_FLAG_DUP_VALIDATED;
|
|
|
|
return false;
|
|
}
|
|
|
|
int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask,
|
|
const u8 *data, u32 count, bool async)
|
|
{
|
|
u8 buf[sizeof(struct iwl_rxq_sync_cmd) +
|
|
sizeof(struct iwl_mvm_rss_sync_notif)];
|
|
struct iwl_rxq_sync_cmd *cmd = (void *)buf;
|
|
u32 data_size = sizeof(*cmd) + count;
|
|
int ret;
|
|
|
|
/*
|
|
* size must be a multiple of DWORD
|
|
* Ensure we don't overflow buf
|
|
*/
|
|
if (WARN_ON(count & 3 ||
|
|
count > sizeof(struct iwl_mvm_rss_sync_notif)))
|
|
return -EINVAL;
|
|
|
|
cmd->rxq_mask = cpu_to_le32(rxq_mask);
|
|
cmd->count = cpu_to_le32(count);
|
|
cmd->flags = 0;
|
|
memcpy(cmd->payload, data, count);
|
|
|
|
ret = iwl_mvm_send_cmd_pdu(mvm,
|
|
WIDE_ID(DATA_PATH_GROUP,
|
|
TRIGGER_RX_QUEUES_NOTIF_CMD),
|
|
async ? CMD_ASYNC : 0, data_size, cmd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Returns true if sn2 - buffer_size < sn1 < sn2.
|
|
* To be used only in order to compare reorder buffer head with NSSN.
|
|
* We fully trust NSSN unless it is behind us due to reorder timeout.
|
|
* Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
|
|
*/
|
|
static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
|
|
{
|
|
return ieee80211_sn_less(sn1, sn2) &&
|
|
!ieee80211_sn_less(sn1, sn2 - buffer_size);
|
|
}
|
|
|
|
static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
|
|
{
|
|
if (IWL_MVM_USE_NSSN_SYNC) {
|
|
struct iwl_mvm_rss_sync_notif notif = {
|
|
.metadata.type = IWL_MVM_RXQ_NSSN_SYNC,
|
|
.metadata.sync = 0,
|
|
.nssn_sync.baid = baid,
|
|
.nssn_sync.nssn = nssn,
|
|
};
|
|
|
|
iwl_mvm_sync_rx_queues_internal(mvm, (void *)¬if,
|
|
sizeof(notif));
|
|
}
|
|
}
|
|
|
|
#define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
|
|
|
|
enum iwl_mvm_release_flags {
|
|
IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
|
|
IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
|
|
};
|
|
|
|
static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
|
|
struct ieee80211_sta *sta,
|
|
struct napi_struct *napi,
|
|
struct iwl_mvm_baid_data *baid_data,
|
|
struct iwl_mvm_reorder_buffer *reorder_buf,
|
|
u16 nssn, u32 flags)
|
|
{
|
|
struct iwl_mvm_reorder_buf_entry *entries =
|
|
&baid_data->entries[reorder_buf->queue *
|
|
baid_data->entries_per_queue];
|
|
u16 ssn = reorder_buf->head_sn;
|
|
|
|
lockdep_assert_held(&reorder_buf->lock);
|
|
|
|
/*
|
|
* We keep the NSSN not too far behind, if we are sync'ing it and it
|
|
* is more than 2048 ahead of us, it must be behind us. Discard it.
|
|
* This can happen if the queue that hit the 0 / 2048 seqno was lagging
|
|
* behind and this queue already processed packets. The next if
|
|
* would have caught cases where this queue would have processed less
|
|
* than 64 packets, but it may have processed more than 64 packets.
|
|
*/
|
|
if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
|
|
ieee80211_sn_less(nssn, ssn))
|
|
goto set_timer;
|
|
|
|
/* ignore nssn smaller than head sn - this can happen due to timeout */
|
|
if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
|
|
goto set_timer;
|
|
|
|
while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
|
|
int index = ssn % reorder_buf->buf_size;
|
|
struct sk_buff_head *skb_list = &entries[index].e.frames;
|
|
struct sk_buff *skb;
|
|
|
|
ssn = ieee80211_sn_inc(ssn);
|
|
if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
|
|
(ssn == 2048 || ssn == 0))
|
|
iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
|
|
|
|
/*
|
|
* Empty the list. Will have more than one frame for A-MSDU.
|
|
* Empty list is valid as well since nssn indicates frames were
|
|
* received.
|
|
*/
|
|
while ((skb = __skb_dequeue(skb_list))) {
|
|
iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
|
|
reorder_buf->queue,
|
|
sta, false);
|
|
reorder_buf->num_stored--;
|
|
}
|
|
}
|
|
reorder_buf->head_sn = nssn;
|
|
|
|
set_timer:
|
|
if (reorder_buf->num_stored && !reorder_buf->removed) {
|
|
u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
|
|
|
|
while (skb_queue_empty(&entries[index].e.frames))
|
|
index = (index + 1) % reorder_buf->buf_size;
|
|
/* modify timer to match next frame's expiration time */
|
|
mod_timer(&reorder_buf->reorder_timer,
|
|
entries[index].e.reorder_time + 1 +
|
|
RX_REORDER_BUF_TIMEOUT_MQ);
|
|
} else {
|
|
del_timer(&reorder_buf->reorder_timer);
|
|
}
|
|
}
|
|
|
|
void iwl_mvm_reorder_timer_expired(struct timer_list *t)
|
|
{
|
|
struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
|
|
struct iwl_mvm_baid_data *baid_data =
|
|
iwl_mvm_baid_data_from_reorder_buf(buf);
|
|
struct iwl_mvm_reorder_buf_entry *entries =
|
|
&baid_data->entries[buf->queue * baid_data->entries_per_queue];
|
|
int i;
|
|
u16 sn = 0, index = 0;
|
|
bool expired = false;
|
|
bool cont = false;
|
|
|
|
spin_lock(&buf->lock);
|
|
|
|
if (!buf->num_stored || buf->removed) {
|
|
spin_unlock(&buf->lock);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < buf->buf_size ; i++) {
|
|
index = (buf->head_sn + i) % buf->buf_size;
|
|
|
|
if (skb_queue_empty(&entries[index].e.frames)) {
|
|
/*
|
|
* If there is a hole and the next frame didn't expire
|
|
* we want to break and not advance SN
|
|
*/
|
|
cont = false;
|
|
continue;
|
|
}
|
|
if (!cont &&
|
|
!time_after(jiffies, entries[index].e.reorder_time +
|
|
RX_REORDER_BUF_TIMEOUT_MQ))
|
|
break;
|
|
|
|
expired = true;
|
|
/* continue until next hole after this expired frames */
|
|
cont = true;
|
|
sn = ieee80211_sn_add(buf->head_sn, i + 1);
|
|
}
|
|
|
|
if (expired) {
|
|
struct ieee80211_sta *sta;
|
|
struct iwl_mvm_sta *mvmsta;
|
|
u8 sta_id = baid_data->sta_id;
|
|
|
|
rcu_read_lock();
|
|
sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
|
|
mvmsta = iwl_mvm_sta_from_mac80211(sta);
|
|
|
|
/* SN is set to the last expired frame + 1 */
|
|
IWL_DEBUG_HT(buf->mvm,
|
|
"Releasing expired frames for sta %u, sn %d\n",
|
|
sta_id, sn);
|
|
iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
|
|
sta, baid_data->tid);
|
|
iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
|
|
buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
|
|
rcu_read_unlock();
|
|
} else {
|
|
/*
|
|
* If no frame expired and there are stored frames, index is now
|
|
* pointing to the first unexpired frame - modify timer
|
|
* accordingly to this frame.
|
|
*/
|
|
mod_timer(&buf->reorder_timer,
|
|
entries[index].e.reorder_time +
|
|
1 + RX_REORDER_BUF_TIMEOUT_MQ);
|
|
}
|
|
spin_unlock(&buf->lock);
|
|
}
|
|
|
|
static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
|
|
struct iwl_mvm_delba_data *data)
|
|
{
|
|
struct iwl_mvm_baid_data *ba_data;
|
|
struct ieee80211_sta *sta;
|
|
struct iwl_mvm_reorder_buffer *reorder_buf;
|
|
u8 baid = data->baid;
|
|
|
|
if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
|
|
ba_data = rcu_dereference(mvm->baid_map[baid]);
|
|
if (WARN_ON_ONCE(!ba_data))
|
|
goto out;
|
|
|
|
sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
|
|
if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
|
|
goto out;
|
|
|
|
reorder_buf = &ba_data->reorder_buf[queue];
|
|
|
|
/* release all frames that are in the reorder buffer to the stack */
|
|
spin_lock_bh(&reorder_buf->lock);
|
|
iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
|
|
ieee80211_sn_add(reorder_buf->head_sn,
|
|
reorder_buf->buf_size),
|
|
0);
|
|
spin_unlock_bh(&reorder_buf->lock);
|
|
del_timer_sync(&reorder_buf->reorder_timer);
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
|
|
struct napi_struct *napi,
|
|
u8 baid, u16 nssn, int queue,
|
|
u32 flags)
|
|
{
|
|
struct ieee80211_sta *sta;
|
|
struct iwl_mvm_reorder_buffer *reorder_buf;
|
|
struct iwl_mvm_baid_data *ba_data;
|
|
|
|
IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
|
|
baid, nssn);
|
|
|
|
if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
|
|
baid >= ARRAY_SIZE(mvm->baid_map)))
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
|
|
ba_data = rcu_dereference(mvm->baid_map[baid]);
|
|
if (WARN_ON_ONCE(!ba_data))
|
|
goto out;
|
|
|
|
sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
|
|
if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
|
|
goto out;
|
|
|
|
reorder_buf = &ba_data->reorder_buf[queue];
|
|
|
|
spin_lock_bh(&reorder_buf->lock);
|
|
iwl_mvm_release_frames(mvm, sta, napi, ba_data,
|
|
reorder_buf, nssn, flags);
|
|
spin_unlock_bh(&reorder_buf->lock);
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
|
|
struct napi_struct *napi, int queue,
|
|
const struct iwl_mvm_nssn_sync_data *data)
|
|
{
|
|
iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
|
|
data->nssn, queue,
|
|
IWL_MVM_RELEASE_FROM_RSS_SYNC);
|
|
}
|
|
|
|
void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
|
|
struct iwl_rx_cmd_buffer *rxb, int queue)
|
|
{
|
|
struct iwl_rx_packet *pkt = rxb_addr(rxb);
|
|
struct iwl_rxq_sync_notification *notif;
|
|
struct iwl_mvm_internal_rxq_notif *internal_notif;
|
|
|
|
notif = (void *)pkt->data;
|
|
internal_notif = (void *)notif->payload;
|
|
|
|
if (internal_notif->sync &&
|
|
mvm->queue_sync_cookie != internal_notif->cookie) {
|
|
WARN_ONCE(1, "Received expired RX queue sync message\n");
|
|
return;
|
|
}
|
|
|
|
switch (internal_notif->type) {
|
|
case IWL_MVM_RXQ_EMPTY:
|
|
break;
|
|
case IWL_MVM_RXQ_NOTIF_DEL_BA:
|
|
iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
|
|
break;
|
|
case IWL_MVM_RXQ_NSSN_SYNC:
|
|
iwl_mvm_nssn_sync(mvm, napi, queue,
|
|
(void *)internal_notif->data);
|
|
break;
|
|
default:
|
|
WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
|
|
}
|
|
|
|
if (internal_notif->sync) {
|
|
WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
|
|
"queue sync: queue %d responded a second time!\n",
|
|
queue);
|
|
if (READ_ONCE(mvm->queue_sync_state) == 0)
|
|
wake_up(&mvm->rx_sync_waitq);
|
|
}
|
|
}
|
|
|
|
static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
|
|
struct ieee80211_sta *sta, int tid,
|
|
struct iwl_mvm_reorder_buffer *buffer,
|
|
u32 reorder, u32 gp2, int queue)
|
|
{
|
|
struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
|
|
|
|
if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
|
|
/* we have a new (A-)MPDU ... */
|
|
|
|
/*
|
|
* reset counter to 0 if we didn't have any oldsn in
|
|
* the last A-MPDU (as detected by GP2 being identical)
|
|
*/
|
|
if (!buffer->consec_oldsn_prev_drop)
|
|
buffer->consec_oldsn_drops = 0;
|
|
|
|
/* either way, update our tracking state */
|
|
buffer->consec_oldsn_ampdu_gp2 = gp2;
|
|
} else if (buffer->consec_oldsn_prev_drop) {
|
|
/*
|
|
* tracking state didn't change, and we had an old SN
|
|
* indication before - do nothing in this case, we
|
|
* already noted this one down and are waiting for the
|
|
* next A-MPDU (by GP2)
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/* return unless this MPDU has old SN */
|
|
if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
|
|
return;
|
|
|
|
/* update state */
|
|
buffer->consec_oldsn_prev_drop = 1;
|
|
buffer->consec_oldsn_drops++;
|
|
|
|
/* if limit is reached, send del BA and reset state */
|
|
if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
|
|
IWL_WARN(mvm,
|
|
"reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
|
|
IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
|
|
sta->addr, queue, tid);
|
|
ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
|
|
buffer->consec_oldsn_prev_drop = 0;
|
|
buffer->consec_oldsn_drops = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns true if the MPDU was buffered\dropped, false if it should be passed
|
|
* to upper layer.
|
|
*/
|
|
static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
|
|
struct napi_struct *napi,
|
|
int queue,
|
|
struct ieee80211_sta *sta,
|
|
struct sk_buff *skb,
|
|
struct iwl_rx_mpdu_desc *desc)
|
|
{
|
|
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
|
|
struct iwl_mvm_sta *mvm_sta;
|
|
struct iwl_mvm_baid_data *baid_data;
|
|
struct iwl_mvm_reorder_buffer *buffer;
|
|
struct sk_buff *tail;
|
|
u32 reorder = le32_to_cpu(desc->reorder_data);
|
|
bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
|
|
bool last_subframe =
|
|
desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
|
|
u8 tid = ieee80211_get_tid(hdr);
|
|
u8 sub_frame_idx = desc->amsdu_info &
|
|
IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
|
|
struct iwl_mvm_reorder_buf_entry *entries;
|
|
int index;
|
|
u16 nssn, sn;
|
|
u8 baid;
|
|
|
|
baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
|
|
IWL_RX_MPDU_REORDER_BAID_SHIFT;
|
|
|
|
/*
|
|
* This also covers the case of receiving a Block Ack Request
|
|
* outside a BA session; we'll pass it to mac80211 and that
|
|
* then sends a delBA action frame.
|
|
* This also covers pure monitor mode, in which case we won't
|
|
* have any BA sessions.
|
|
*/
|
|
if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
|
|
return false;
|
|
|
|
/* no sta yet */
|
|
if (WARN_ONCE(IS_ERR_OR_NULL(sta),
|
|
"Got valid BAID without a valid station assigned\n"))
|
|
return false;
|
|
|
|
mvm_sta = iwl_mvm_sta_from_mac80211(sta);
|
|
|
|
/* not a data packet or a bar */
|
|
if (!ieee80211_is_back_req(hdr->frame_control) &&
|
|
(!ieee80211_is_data_qos(hdr->frame_control) ||
|
|
is_multicast_ether_addr(hdr->addr1)))
|
|
return false;
|
|
|
|
if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
|
|
return false;
|
|
|
|
baid_data = rcu_dereference(mvm->baid_map[baid]);
|
|
if (!baid_data) {
|
|
IWL_DEBUG_RX(mvm,
|
|
"Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
|
|
baid, reorder);
|
|
return false;
|
|
}
|
|
|
|
if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
|
|
"baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
|
|
baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
|
|
tid))
|
|
return false;
|
|
|
|
nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
|
|
sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
|
|
IWL_RX_MPDU_REORDER_SN_SHIFT;
|
|
|
|
buffer = &baid_data->reorder_buf[queue];
|
|
entries = &baid_data->entries[queue * baid_data->entries_per_queue];
|
|
|
|
spin_lock_bh(&buffer->lock);
|
|
|
|
if (!buffer->valid) {
|
|
if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
|
|
spin_unlock_bh(&buffer->lock);
|
|
return false;
|
|
}
|
|
buffer->valid = true;
|
|
}
|
|
|
|
if (ieee80211_is_back_req(hdr->frame_control)) {
|
|
iwl_mvm_release_frames(mvm, sta, napi, baid_data,
|
|
buffer, nssn, 0);
|
|
goto drop;
|
|
}
|
|
|
|
/*
|
|
* If there was a significant jump in the nssn - adjust.
|
|
* If the SN is smaller than the NSSN it might need to first go into
|
|
* the reorder buffer, in which case we just release up to it and the
|
|
* rest of the function will take care of storing it and releasing up to
|
|
* the nssn.
|
|
* This should not happen. This queue has been lagging and it should
|
|
* have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
|
|
* and update the other queues.
|
|
*/
|
|
if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
|
|
buffer->buf_size) ||
|
|
!ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
|
|
u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
|
|
|
|
iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
|
|
min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
|
|
}
|
|
|
|
iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
|
|
rx_status->device_timestamp, queue);
|
|
|
|
/* drop any oudated packets */
|
|
if (ieee80211_sn_less(sn, buffer->head_sn))
|
|
goto drop;
|
|
|
|
/* release immediately if allowed by nssn and no stored frames */
|
|
if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
|
|
if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
|
|
buffer->buf_size) &&
|
|
(!amsdu || last_subframe)) {
|
|
/*
|
|
* If we crossed the 2048 or 0 SN, notify all the
|
|
* queues. This is done in order to avoid having a
|
|
* head_sn that lags behind for too long. When that
|
|
* happens, we can get to a situation where the head_sn
|
|
* is within the interval [nssn - buf_size : nssn]
|
|
* which will make us think that the nssn is a packet
|
|
* that we already freed because of the reordering
|
|
* buffer and we will ignore it. So maintain the
|
|
* head_sn somewhat updated across all the queues:
|
|
* when it crosses 0 and 2048.
|
|
*/
|
|
if (sn == 2048 || sn == 0)
|
|
iwl_mvm_sync_nssn(mvm, baid, sn);
|
|
buffer->head_sn = nssn;
|
|
}
|
|
/* No need to update AMSDU last SN - we are moving the head */
|
|
spin_unlock_bh(&buffer->lock);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* release immediately if there are no stored frames, and the sn is
|
|
* equal to the head.
|
|
* This can happen due to reorder timer, where NSSN is behind head_sn.
|
|
* When we released everything, and we got the next frame in the
|
|
* sequence, according to the NSSN we can't release immediately,
|
|
* while technically there is no hole and we can move forward.
|
|
*/
|
|
if (!buffer->num_stored && sn == buffer->head_sn) {
|
|
if (!amsdu || last_subframe) {
|
|
if (sn == 2048 || sn == 0)
|
|
iwl_mvm_sync_nssn(mvm, baid, sn);
|
|
buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
|
|
}
|
|
/* No need to update AMSDU last SN - we are moving the head */
|
|
spin_unlock_bh(&buffer->lock);
|
|
return false;
|
|
}
|
|
|
|
index = sn % buffer->buf_size;
|
|
|
|
/*
|
|
* Check if we already stored this frame
|
|
* As AMSDU is either received or not as whole, logic is simple:
|
|
* If we have frames in that position in the buffer and the last frame
|
|
* originated from AMSDU had a different SN then it is a retransmission.
|
|
* If it is the same SN then if the subframe index is incrementing it
|
|
* is the same AMSDU - otherwise it is a retransmission.
|
|
*/
|
|
tail = skb_peek_tail(&entries[index].e.frames);
|
|
if (tail && !amsdu)
|
|
goto drop;
|
|
else if (tail && (sn != buffer->last_amsdu ||
|
|
buffer->last_sub_index >= sub_frame_idx))
|
|
goto drop;
|
|
|
|
/* put in reorder buffer */
|
|
__skb_queue_tail(&entries[index].e.frames, skb);
|
|
buffer->num_stored++;
|
|
entries[index].e.reorder_time = jiffies;
|
|
|
|
if (amsdu) {
|
|
buffer->last_amsdu = sn;
|
|
buffer->last_sub_index = sub_frame_idx;
|
|
}
|
|
|
|
/*
|
|
* We cannot trust NSSN for AMSDU sub-frames that are not the last.
|
|
* The reason is that NSSN advances on the first sub-frame, and may
|
|
* cause the reorder buffer to advance before all the sub-frames arrive.
|
|
* Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
|
|
* SN 1. NSSN for first sub frame will be 3 with the result of driver
|
|
* releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
|
|
* already ahead and it will be dropped.
|
|
* If the last sub-frame is not on this queue - we will get frame
|
|
* release notification with up to date NSSN.
|
|
*/
|
|
if (!amsdu || last_subframe)
|
|
iwl_mvm_release_frames(mvm, sta, napi, baid_data,
|
|
buffer, nssn,
|
|
IWL_MVM_RELEASE_SEND_RSS_SYNC);
|
|
|
|
spin_unlock_bh(&buffer->lock);
|
|
return true;
|
|
|
|
drop:
|
|
kfree_skb(skb);
|
|
spin_unlock_bh(&buffer->lock);
|
|
return true;
|
|
}
|
|
|
|
static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
|
|
u32 reorder_data, u8 baid)
|
|
{
|
|
unsigned long now = jiffies;
|
|
unsigned long timeout;
|
|
struct iwl_mvm_baid_data *data;
|
|
|
|
rcu_read_lock();
|
|
|
|
data = rcu_dereference(mvm->baid_map[baid]);
|
|
if (!data) {
|
|
IWL_DEBUG_RX(mvm,
|
|
"Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
|
|
baid, reorder_data);
|
|
goto out;
|
|
}
|
|
|
|
if (!data->timeout)
|
|
goto out;
|
|
|
|
timeout = data->timeout;
|
|
/*
|
|
* Do not update last rx all the time to avoid cache bouncing
|
|
* between the rx queues.
|
|
* Update it every timeout. Worst case is the session will
|
|
* expire after ~ 2 * timeout, which doesn't matter that much.
|
|
*/
|
|
if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
|
|
/* Update is atomic */
|
|
data->last_rx = now;
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void iwl_mvm_flip_address(u8 *addr)
|
|
{
|
|
int i;
|
|
u8 mac_addr[ETH_ALEN];
|
|
|
|
for (i = 0; i < ETH_ALEN; i++)
|
|
mac_addr[i] = addr[ETH_ALEN - i - 1];
|
|
ether_addr_copy(addr, mac_addr);
|
|
}
|
|
|
|
struct iwl_mvm_rx_phy_data {
|
|
enum iwl_rx_phy_info_type info_type;
|
|
__le32 d0, d1, d2, d3;
|
|
__le16 d4;
|
|
};
|
|
|
|
static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
|
|
struct iwl_mvm_rx_phy_data *phy_data,
|
|
u32 rate_n_flags,
|
|
struct ieee80211_radiotap_he_mu *he_mu)
|
|
{
|
|
u32 phy_data2 = le32_to_cpu(phy_data->d2);
|
|
u32 phy_data3 = le32_to_cpu(phy_data->d3);
|
|
u16 phy_data4 = le16_to_cpu(phy_data->d4);
|
|
|
|
if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
|
|
he_mu->flags1 |=
|
|
cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
|
|
|
|
he_mu->flags1 |=
|
|
le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
|
|
phy_data4),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
|
|
|
|
he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
|
|
phy_data2);
|
|
he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
|
|
phy_data3);
|
|
he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
|
|
phy_data2);
|
|
he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
|
|
phy_data3);
|
|
}
|
|
|
|
if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
|
|
(rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
|
|
he_mu->flags1 |=
|
|
cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
|
|
|
|
he_mu->flags2 |=
|
|
le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
|
|
phy_data4),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
|
|
|
|
he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
|
|
phy_data2);
|
|
he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
|
|
phy_data3);
|
|
he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
|
|
phy_data2);
|
|
he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
|
|
phy_data3);
|
|
}
|
|
}
|
|
|
|
static void
|
|
iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
|
|
u32 rate_n_flags,
|
|
struct ieee80211_radiotap_he *he,
|
|
struct ieee80211_radiotap_he_mu *he_mu,
|
|
struct ieee80211_rx_status *rx_status)
|
|
{
|
|
/*
|
|
* Unfortunately, we have to leave the mac80211 data
|
|
* incorrect for the case that we receive an HE-MU
|
|
* transmission and *don't* have the HE phy data (due
|
|
* to the bits being used for TSF). This shouldn't
|
|
* happen though as management frames where we need
|
|
* the TSF/timers are not be transmitted in HE-MU.
|
|
*/
|
|
u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
|
|
u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
|
|
u8 offs = 0;
|
|
|
|
rx_status->bw = RATE_INFO_BW_HE_RU;
|
|
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
|
|
|
|
switch (ru) {
|
|
case 0 ... 36:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
|
|
offs = ru;
|
|
break;
|
|
case 37 ... 52:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
|
|
offs = ru - 37;
|
|
break;
|
|
case 53 ... 60:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
|
|
offs = ru - 53;
|
|
break;
|
|
case 61 ... 64:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
|
|
offs = ru - 61;
|
|
break;
|
|
case 65 ... 66:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
|
|
offs = ru - 65;
|
|
break;
|
|
case 67:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
|
|
break;
|
|
case 68:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
|
|
break;
|
|
}
|
|
he->data2 |= le16_encode_bits(offs,
|
|
IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
|
|
he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
|
|
if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
|
|
he->data2 |=
|
|
cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
|
|
|
|
#define CHECK_BW(bw) \
|
|
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
|
|
RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
|
|
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
|
|
RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
|
|
CHECK_BW(20);
|
|
CHECK_BW(40);
|
|
CHECK_BW(80);
|
|
CHECK_BW(160);
|
|
|
|
if (he_mu)
|
|
he_mu->flags2 |=
|
|
le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
|
|
rate_n_flags),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
|
|
else if (he_type == RATE_MCS_HE_TYPE_TRIG)
|
|
he->data6 |=
|
|
cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
|
|
le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
|
|
rate_n_flags),
|
|
IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
|
|
}
|
|
|
|
static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
|
|
struct iwl_mvm_rx_phy_data *phy_data,
|
|
struct ieee80211_radiotap_he *he,
|
|
struct ieee80211_radiotap_he_mu *he_mu,
|
|
struct ieee80211_rx_status *rx_status,
|
|
u32 rate_n_flags, int queue)
|
|
{
|
|
switch (phy_data->info_type) {
|
|
case IWL_RX_PHY_INFO_TYPE_NONE:
|
|
case IWL_RX_PHY_INFO_TYPE_CCK:
|
|
case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
|
|
case IWL_RX_PHY_INFO_TYPE_HT:
|
|
case IWL_RX_PHY_INFO_TYPE_VHT_SU:
|
|
case IWL_RX_PHY_INFO_TYPE_VHT_MU:
|
|
return;
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
|
|
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
|
|
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
|
|
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
|
|
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
|
|
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
|
|
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
|
|
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
|
|
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
|
|
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
|
|
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
|
|
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
|
|
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
|
|
/* fall through */
|
|
case IWL_RX_PHY_INFO_TYPE_HE_SU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB:
|
|
/* HE common */
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
|
|
he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
|
|
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
|
|
IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
|
|
if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
|
|
phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
|
|
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_UPLINK),
|
|
IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
|
|
}
|
|
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
|
|
IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
|
|
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
|
|
IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
|
|
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
|
|
IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
|
|
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
|
|
IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
|
|
IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
|
|
he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
|
|
IEEE80211_RADIOTAP_HE_DATA6_TXOP);
|
|
he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_DOPPLER),
|
|
IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
|
|
break;
|
|
}
|
|
|
|
switch (phy_data->info_type) {
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_SU:
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
|
|
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
|
|
IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
|
|
break;
|
|
default:
|
|
/* nothing here */
|
|
break;
|
|
}
|
|
|
|
switch (phy_data->info_type) {
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
|
|
he_mu->flags1 |=
|
|
le16_encode_bits(le16_get_bits(phy_data->d4,
|
|
IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
|
|
he_mu->flags1 |=
|
|
le16_encode_bits(le16_get_bits(phy_data->d4,
|
|
IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
|
|
he_mu->flags2 |=
|
|
le16_encode_bits(le16_get_bits(phy_data->d4,
|
|
IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
|
|
iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
|
|
/* fall through */
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU:
|
|
he_mu->flags2 |=
|
|
le16_encode_bits(le32_get_bits(phy_data->d1,
|
|
IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
|
|
he_mu->flags2 |=
|
|
le16_encode_bits(le32_get_bits(phy_data->d1,
|
|
IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
|
|
/* fall through */
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
|
|
iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
|
|
he, he_mu, rx_status);
|
|
break;
|
|
case IWL_RX_PHY_INFO_TYPE_HE_SU:
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
|
|
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
|
|
IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
|
|
break;
|
|
default:
|
|
/* nothing */
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
|
|
struct iwl_mvm_rx_phy_data *phy_data,
|
|
u32 rate_n_flags, u16 phy_info, int queue)
|
|
{
|
|
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_radiotap_he *he = NULL;
|
|
struct ieee80211_radiotap_he_mu *he_mu = NULL;
|
|
u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
|
|
u8 stbc, ltf;
|
|
static const struct ieee80211_radiotap_he known = {
|
|
.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
|
|
.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
|
|
};
|
|
static const struct ieee80211_radiotap_he_mu mu_known = {
|
|
.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
|
|
.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
|
|
};
|
|
|
|
he = skb_put_data(skb, &known, sizeof(known));
|
|
rx_status->flag |= RX_FLAG_RADIOTAP_HE;
|
|
|
|
if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
|
|
phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
|
|
he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
|
|
rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
|
|
}
|
|
|
|
/* report the AMPDU-EOF bit on single frames */
|
|
if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
|
|
rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
|
|
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
|
|
if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
|
|
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
|
|
}
|
|
|
|
if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
|
|
iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
|
|
rate_n_flags, queue);
|
|
|
|
/* update aggregation data for monitor sake on default queue */
|
|
if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
|
|
(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
|
|
bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
|
|
|
|
/* toggle is switched whenever new aggregation starts */
|
|
if (toggle_bit != mvm->ampdu_toggle) {
|
|
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
|
|
if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
|
|
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
|
|
}
|
|
}
|
|
|
|
if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
|
|
rate_n_flags & RATE_MCS_HE_106T_MSK) {
|
|
rx_status->bw = RATE_INFO_BW_HE_RU;
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
|
|
}
|
|
|
|
/* actually data is filled in mac80211 */
|
|
if (he_type == RATE_MCS_HE_TYPE_SU ||
|
|
he_type == RATE_MCS_HE_TYPE_EXT_SU)
|
|
he->data1 |=
|
|
cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
|
|
|
|
stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
|
|
rx_status->nss =
|
|
((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
|
|
RATE_VHT_MCS_NSS_POS) + 1;
|
|
rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
|
|
rx_status->encoding = RX_ENC_HE;
|
|
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
|
|
if (rate_n_flags & RATE_MCS_BF_MSK)
|
|
rx_status->enc_flags |= RX_ENC_FLAG_BF;
|
|
|
|
rx_status->he_dcm =
|
|
!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
|
|
|
|
#define CHECK_TYPE(F) \
|
|
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
|
|
(RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
|
|
|
|
CHECK_TYPE(SU);
|
|
CHECK_TYPE(EXT_SU);
|
|
CHECK_TYPE(MU);
|
|
CHECK_TYPE(TRIG);
|
|
|
|
he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
|
|
|
|
if (rate_n_flags & RATE_MCS_BF_MSK)
|
|
he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
|
|
|
|
switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
|
|
RATE_MCS_HE_GI_LTF_POS) {
|
|
case 0:
|
|
if (he_type == RATE_MCS_HE_TYPE_TRIG)
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
|
|
else
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
|
|
if (he_type == RATE_MCS_HE_TYPE_MU)
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
|
|
else
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
|
|
break;
|
|
case 1:
|
|
if (he_type == RATE_MCS_HE_TYPE_TRIG)
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
|
|
else
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
|
|
break;
|
|
case 2:
|
|
if (he_type == RATE_MCS_HE_TYPE_TRIG) {
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
|
|
} else {
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
|
|
}
|
|
break;
|
|
case 3:
|
|
if ((he_type == RATE_MCS_HE_TYPE_SU ||
|
|
he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
|
|
rate_n_flags & RATE_MCS_SGI_MSK)
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
|
|
else
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
|
|
break;
|
|
}
|
|
|
|
he->data5 |= le16_encode_bits(ltf,
|
|
IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
|
|
}
|
|
|
|
static void iwl_mvm_decode_lsig(struct sk_buff *skb,
|
|
struct iwl_mvm_rx_phy_data *phy_data)
|
|
{
|
|
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_radiotap_lsig *lsig;
|
|
|
|
switch (phy_data->info_type) {
|
|
case IWL_RX_PHY_INFO_TYPE_HT:
|
|
case IWL_RX_PHY_INFO_TYPE_VHT_SU:
|
|
case IWL_RX_PHY_INFO_TYPE_VHT_MU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_SU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB:
|
|
lsig = skb_put(skb, sizeof(*lsig));
|
|
lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
|
|
lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
|
|
IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
|
|
IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
|
|
rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
|
|
{
|
|
switch (phy_band) {
|
|
case PHY_BAND_24:
|
|
return NL80211_BAND_2GHZ;
|
|
case PHY_BAND_5:
|
|
return NL80211_BAND_5GHZ;
|
|
default:
|
|
WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
|
|
return NL80211_BAND_5GHZ;
|
|
}
|
|
}
|
|
|
|
void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
|
|
struct iwl_rx_cmd_buffer *rxb, int queue)
|
|
{
|
|
struct ieee80211_rx_status *rx_status;
|
|
struct iwl_rx_packet *pkt = rxb_addr(rxb);
|
|
struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
|
|
struct ieee80211_hdr *hdr;
|
|
u32 len = le16_to_cpu(desc->mpdu_len);
|
|
u32 rate_n_flags, gp2_on_air_rise;
|
|
u16 phy_info = le16_to_cpu(desc->phy_info);
|
|
struct ieee80211_sta *sta = NULL;
|
|
struct sk_buff *skb;
|
|
u8 crypt_len = 0, channel, energy_a, energy_b;
|
|
size_t desc_size;
|
|
struct iwl_mvm_rx_phy_data phy_data = {
|
|
.d4 = desc->phy_data4,
|
|
.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
|
|
};
|
|
bool csi = false;
|
|
|
|
if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
|
|
return;
|
|
|
|
if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
|
|
rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
|
|
channel = desc->v3.channel;
|
|
gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
|
|
energy_a = desc->v3.energy_a;
|
|
energy_b = desc->v3.energy_b;
|
|
desc_size = sizeof(*desc);
|
|
|
|
phy_data.d0 = desc->v3.phy_data0;
|
|
phy_data.d1 = desc->v3.phy_data1;
|
|
phy_data.d2 = desc->v3.phy_data2;
|
|
phy_data.d3 = desc->v3.phy_data3;
|
|
} else {
|
|
rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
|
|
channel = desc->v1.channel;
|
|
gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
|
|
energy_a = desc->v1.energy_a;
|
|
energy_b = desc->v1.energy_b;
|
|
desc_size = IWL_RX_DESC_SIZE_V1;
|
|
|
|
phy_data.d0 = desc->v1.phy_data0;
|
|
phy_data.d1 = desc->v1.phy_data1;
|
|
phy_data.d2 = desc->v1.phy_data2;
|
|
phy_data.d3 = desc->v1.phy_data3;
|
|
}
|
|
|
|
if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
|
|
phy_data.info_type =
|
|
le32_get_bits(phy_data.d1,
|
|
IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
|
|
|
|
hdr = (void *)(pkt->data + desc_size);
|
|
/* Dont use dev_alloc_skb(), we'll have enough headroom once
|
|
* ieee80211_hdr pulled.
|
|
*/
|
|
skb = alloc_skb(128, GFP_ATOMIC);
|
|
if (!skb) {
|
|
IWL_ERR(mvm, "alloc_skb failed\n");
|
|
return;
|
|
}
|
|
|
|
if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
|
|
/*
|
|
* If the device inserted padding it means that (it thought)
|
|
* the 802.11 header wasn't a multiple of 4 bytes long. In
|
|
* this case, reserve two bytes at the start of the SKB to
|
|
* align the payload properly in case we end up copying it.
|
|
*/
|
|
skb_reserve(skb, 2);
|
|
}
|
|
|
|
rx_status = IEEE80211_SKB_RXCB(skb);
|
|
|
|
/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
|
|
switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
|
|
case RATE_MCS_CHAN_WIDTH_20:
|
|
break;
|
|
case RATE_MCS_CHAN_WIDTH_40:
|
|
rx_status->bw = RATE_INFO_BW_40;
|
|
break;
|
|
case RATE_MCS_CHAN_WIDTH_80:
|
|
rx_status->bw = RATE_INFO_BW_80;
|
|
break;
|
|
case RATE_MCS_CHAN_WIDTH_160:
|
|
rx_status->bw = RATE_INFO_BW_160;
|
|
break;
|
|
}
|
|
|
|
if (rate_n_flags & RATE_MCS_HE_MSK)
|
|
iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
|
|
phy_info, queue);
|
|
|
|
iwl_mvm_decode_lsig(skb, &phy_data);
|
|
|
|
rx_status = IEEE80211_SKB_RXCB(skb);
|
|
|
|
if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc,
|
|
le32_to_cpu(pkt->len_n_flags), queue,
|
|
&crypt_len)) {
|
|
kfree_skb(skb);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Keep packets with CRC errors (and with overrun) for monitor mode
|
|
* (otherwise the firmware discards them) but mark them as bad.
|
|
*/
|
|
if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
|
|
!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
|
|
IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
|
|
le32_to_cpu(desc->status));
|
|
rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
|
|
}
|
|
/* set the preamble flag if appropriate */
|
|
if (rate_n_flags & RATE_MCS_CCK_MSK &&
|
|
phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
|
|
rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
|
|
|
|
if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
|
|
u64 tsf_on_air_rise;
|
|
|
|
if (mvm->trans->trans_cfg->device_family >=
|
|
IWL_DEVICE_FAMILY_AX210)
|
|
tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
|
|
else
|
|
tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
|
|
|
|
rx_status->mactime = tsf_on_air_rise;
|
|
/* TSF as indicated by the firmware is at INA time */
|
|
rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
|
|
}
|
|
|
|
rx_status->device_timestamp = gp2_on_air_rise;
|
|
if (iwl_mvm_is_band_in_rx_supported(mvm)) {
|
|
u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
|
|
|
|
rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
|
|
} else {
|
|
rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
|
|
NL80211_BAND_2GHZ;
|
|
}
|
|
rx_status->freq = ieee80211_channel_to_frequency(channel,
|
|
rx_status->band);
|
|
iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
|
|
energy_b);
|
|
|
|
/* update aggregation data for monitor sake on default queue */
|
|
if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
|
|
bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
|
|
|
|
rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
|
|
/*
|
|
* Toggle is switched whenever new aggregation starts. Make
|
|
* sure ampdu_reference is never 0 so we can later use it to
|
|
* see if the frame was really part of an A-MPDU or not.
|
|
*/
|
|
if (toggle_bit != mvm->ampdu_toggle) {
|
|
mvm->ampdu_ref++;
|
|
if (mvm->ampdu_ref == 0)
|
|
mvm->ampdu_ref++;
|
|
mvm->ampdu_toggle = toggle_bit;
|
|
}
|
|
rx_status->ampdu_reference = mvm->ampdu_ref;
|
|
}
|
|
|
|
if (unlikely(mvm->monitor_on))
|
|
iwl_mvm_add_rtap_sniffer_config(mvm, skb);
|
|
|
|
rcu_read_lock();
|
|
|
|
if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
|
|
u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
|
|
|
|
if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
|
|
sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
|
|
if (IS_ERR(sta))
|
|
sta = NULL;
|
|
}
|
|
} else if (!is_multicast_ether_addr(hdr->addr2)) {
|
|
/*
|
|
* This is fine since we prevent two stations with the same
|
|
* address from being added.
|
|
*/
|
|
sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
|
|
}
|
|
|
|
if (sta) {
|
|
struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
|
|
struct ieee80211_vif *tx_blocked_vif =
|
|
rcu_dereference(mvm->csa_tx_blocked_vif);
|
|
u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
|
|
IWL_RX_MPDU_REORDER_BAID_MASK) >>
|
|
IWL_RX_MPDU_REORDER_BAID_SHIFT);
|
|
struct iwl_fw_dbg_trigger_tlv *trig;
|
|
struct ieee80211_vif *vif = mvmsta->vif;
|
|
|
|
if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
|
|
!is_multicast_ether_addr(hdr->addr1) &&
|
|
ieee80211_is_data(hdr->frame_control) &&
|
|
time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
|
|
schedule_delayed_work(&mvm->tcm.work, 0);
|
|
|
|
/*
|
|
* We have tx blocked stations (with CS bit). If we heard
|
|
* frames from a blocked station on a new channel we can
|
|
* TX to it again.
|
|
*/
|
|
if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
|
|
struct iwl_mvm_vif *mvmvif =
|
|
iwl_mvm_vif_from_mac80211(tx_blocked_vif);
|
|
|
|
if (mvmvif->csa_target_freq == rx_status->freq)
|
|
iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
|
|
false);
|
|
}
|
|
|
|
rs_update_last_rssi(mvm, mvmsta, rx_status);
|
|
|
|
trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
|
|
ieee80211_vif_to_wdev(vif),
|
|
FW_DBG_TRIGGER_RSSI);
|
|
|
|
if (trig && ieee80211_is_beacon(hdr->frame_control)) {
|
|
struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
|
|
s32 rssi;
|
|
|
|
rssi_trig = (void *)trig->data;
|
|
rssi = le32_to_cpu(rssi_trig->rssi);
|
|
|
|
if (rx_status->signal < rssi)
|
|
iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
|
|
NULL);
|
|
}
|
|
|
|
if (ieee80211_is_data(hdr->frame_control))
|
|
iwl_mvm_rx_csum(mvm, sta, skb, pkt);
|
|
|
|
if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
|
|
kfree_skb(skb);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Our hardware de-aggregates AMSDUs but copies the mac header
|
|
* as it to the de-aggregated MPDUs. We need to turn off the
|
|
* AMSDU bit in the QoS control ourselves.
|
|
* In addition, HW reverses addr3 and addr4 - reverse it back.
|
|
*/
|
|
if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
|
|
!WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
|
|
u8 *qc = ieee80211_get_qos_ctl(hdr);
|
|
|
|
*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
|
|
|
|
if (mvm->trans->trans_cfg->device_family ==
|
|
IWL_DEVICE_FAMILY_9000) {
|
|
iwl_mvm_flip_address(hdr->addr3);
|
|
|
|
if (ieee80211_has_a4(hdr->frame_control))
|
|
iwl_mvm_flip_address(hdr->addr4);
|
|
}
|
|
}
|
|
if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
|
|
u32 reorder_data = le32_to_cpu(desc->reorder_data);
|
|
|
|
iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
|
|
}
|
|
}
|
|
|
|
if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
|
|
rate_n_flags & RATE_MCS_SGI_MSK)
|
|
rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
|
|
if (rate_n_flags & RATE_HT_MCS_GF_MSK)
|
|
rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
|
|
if (rate_n_flags & RATE_MCS_LDPC_MSK)
|
|
rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
|
|
if (rate_n_flags & RATE_MCS_HT_MSK) {
|
|
u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
|
|
RATE_MCS_STBC_POS;
|
|
rx_status->encoding = RX_ENC_HT;
|
|
rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
|
|
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
|
|
} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
|
|
u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
|
|
RATE_MCS_STBC_POS;
|
|
rx_status->nss =
|
|
((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
|
|
RATE_VHT_MCS_NSS_POS) + 1;
|
|
rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
|
|
rx_status->encoding = RX_ENC_VHT;
|
|
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
|
|
if (rate_n_flags & RATE_MCS_BF_MSK)
|
|
rx_status->enc_flags |= RX_ENC_FLAG_BF;
|
|
} else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
|
|
int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
|
|
rx_status->band);
|
|
|
|
if (WARN(rate < 0 || rate > 0xFF,
|
|
"Invalid rate flags 0x%x, band %d,\n",
|
|
rate_n_flags, rx_status->band)) {
|
|
kfree_skb(skb);
|
|
goto out;
|
|
}
|
|
rx_status->rate_idx = rate;
|
|
}
|
|
|
|
/* management stuff on default queue */
|
|
if (!queue) {
|
|
if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
|
|
ieee80211_is_probe_resp(hdr->frame_control)) &&
|
|
mvm->sched_scan_pass_all ==
|
|
SCHED_SCAN_PASS_ALL_ENABLED))
|
|
mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
|
|
|
|
if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
|
|
ieee80211_is_probe_resp(hdr->frame_control)))
|
|
rx_status->boottime_ns = ktime_get_boottime_ns();
|
|
}
|
|
|
|
if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
|
|
kfree_skb(skb);
|
|
goto out;
|
|
}
|
|
|
|
if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
|
|
iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
|
|
sta, csi);
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
|
|
struct iwl_rx_cmd_buffer *rxb, int queue)
|
|
{
|
|
struct ieee80211_rx_status *rx_status;
|
|
struct iwl_rx_packet *pkt = rxb_addr(rxb);
|
|
struct iwl_rx_no_data *desc = (void *)pkt->data;
|
|
u32 rate_n_flags = le32_to_cpu(desc->rate);
|
|
u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
|
|
u32 rssi = le32_to_cpu(desc->rssi);
|
|
u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
|
|
u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
|
|
struct ieee80211_sta *sta = NULL;
|
|
struct sk_buff *skb;
|
|
u8 channel, energy_a, energy_b;
|
|
struct iwl_mvm_rx_phy_data phy_data = {
|
|
.d0 = desc->phy_info[0],
|
|
.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
|
|
};
|
|
|
|
if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
|
|
return;
|
|
|
|
energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
|
|
energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
|
|
channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
|
|
|
|
phy_data.info_type =
|
|
le32_get_bits(desc->phy_info[1],
|
|
IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
|
|
|
|
/* Dont use dev_alloc_skb(), we'll have enough headroom once
|
|
* ieee80211_hdr pulled.
|
|
*/
|
|
skb = alloc_skb(128, GFP_ATOMIC);
|
|
if (!skb) {
|
|
IWL_ERR(mvm, "alloc_skb failed\n");
|
|
return;
|
|
}
|
|
|
|
rx_status = IEEE80211_SKB_RXCB(skb);
|
|
|
|
/* 0-length PSDU */
|
|
rx_status->flag |= RX_FLAG_NO_PSDU;
|
|
|
|
switch (info_type) {
|
|
case RX_NO_DATA_INFO_TYPE_NDP:
|
|
rx_status->zero_length_psdu_type =
|
|
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
|
|
break;
|
|
case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
|
|
case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
|
|
rx_status->zero_length_psdu_type =
|
|
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
|
|
break;
|
|
default:
|
|
rx_status->zero_length_psdu_type =
|
|
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
|
|
break;
|
|
}
|
|
|
|
/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
|
|
switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
|
|
case RATE_MCS_CHAN_WIDTH_20:
|
|
break;
|
|
case RATE_MCS_CHAN_WIDTH_40:
|
|
rx_status->bw = RATE_INFO_BW_40;
|
|
break;
|
|
case RATE_MCS_CHAN_WIDTH_80:
|
|
rx_status->bw = RATE_INFO_BW_80;
|
|
break;
|
|
case RATE_MCS_CHAN_WIDTH_160:
|
|
rx_status->bw = RATE_INFO_BW_160;
|
|
break;
|
|
}
|
|
|
|
if (rate_n_flags & RATE_MCS_HE_MSK)
|
|
iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
|
|
phy_info, queue);
|
|
|
|
iwl_mvm_decode_lsig(skb, &phy_data);
|
|
|
|
rx_status->device_timestamp = gp2_on_air_rise;
|
|
rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
|
|
NL80211_BAND_2GHZ;
|
|
rx_status->freq = ieee80211_channel_to_frequency(channel,
|
|
rx_status->band);
|
|
iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
|
|
energy_b);
|
|
|
|
rcu_read_lock();
|
|
|
|
if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
|
|
rate_n_flags & RATE_MCS_SGI_MSK)
|
|
rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
|
|
if (rate_n_flags & RATE_HT_MCS_GF_MSK)
|
|
rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
|
|
if (rate_n_flags & RATE_MCS_LDPC_MSK)
|
|
rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
|
|
if (rate_n_flags & RATE_MCS_HT_MSK) {
|
|
u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
|
|
RATE_MCS_STBC_POS;
|
|
rx_status->encoding = RX_ENC_HT;
|
|
rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
|
|
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
|
|
} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
|
|
u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
|
|
RATE_MCS_STBC_POS;
|
|
rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
|
|
rx_status->encoding = RX_ENC_VHT;
|
|
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
|
|
if (rate_n_flags & RATE_MCS_BF_MSK)
|
|
rx_status->enc_flags |= RX_ENC_FLAG_BF;
|
|
/*
|
|
* take the nss from the rx_vec since the rate_n_flags has
|
|
* only 2 bits for the nss which gives a max of 4 ss but
|
|
* there may be up to 8 spatial streams
|
|
*/
|
|
rx_status->nss =
|
|
le32_get_bits(desc->rx_vec[0],
|
|
RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
|
|
} else if (rate_n_flags & RATE_MCS_HE_MSK) {
|
|
rx_status->nss =
|
|
le32_get_bits(desc->rx_vec[0],
|
|
RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
|
|
} else {
|
|
int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
|
|
rx_status->band);
|
|
|
|
if (WARN(rate < 0 || rate > 0xFF,
|
|
"Invalid rate flags 0x%x, band %d,\n",
|
|
rate_n_flags, rx_status->band)) {
|
|
kfree_skb(skb);
|
|
goto out;
|
|
}
|
|
rx_status->rate_idx = rate;
|
|
}
|
|
|
|
ieee80211_rx_napi(mvm->hw, sta, skb, napi);
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
|
|
struct iwl_rx_cmd_buffer *rxb, int queue)
|
|
{
|
|
struct iwl_rx_packet *pkt = rxb_addr(rxb);
|
|
struct iwl_frame_release *release = (void *)pkt->data;
|
|
|
|
iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
|
|
le16_to_cpu(release->nssn),
|
|
queue, 0);
|
|
}
|
|
|
|
void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
|
|
struct iwl_rx_cmd_buffer *rxb, int queue)
|
|
{
|
|
struct iwl_rx_packet *pkt = rxb_addr(rxb);
|
|
struct iwl_bar_frame_release *release = (void *)pkt->data;
|
|
unsigned int baid = le32_get_bits(release->ba_info,
|
|
IWL_BAR_FRAME_RELEASE_BAID_MASK);
|
|
unsigned int nssn = le32_get_bits(release->ba_info,
|
|
IWL_BAR_FRAME_RELEASE_NSSN_MASK);
|
|
unsigned int sta_id = le32_get_bits(release->sta_tid,
|
|
IWL_BAR_FRAME_RELEASE_STA_MASK);
|
|
unsigned int tid = le32_get_bits(release->sta_tid,
|
|
IWL_BAR_FRAME_RELEASE_TID_MASK);
|
|
struct iwl_mvm_baid_data *baid_data;
|
|
|
|
if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
|
|
baid >= ARRAY_SIZE(mvm->baid_map)))
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
baid_data = rcu_dereference(mvm->baid_map[baid]);
|
|
if (!baid_data) {
|
|
IWL_DEBUG_RX(mvm,
|
|
"Got valid BAID %d but not allocated, invalid BAR release!\n",
|
|
baid);
|
|
goto out;
|
|
}
|
|
|
|
if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
|
|
"baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
|
|
baid, baid_data->sta_id, baid_data->tid, sta_id,
|
|
tid))
|
|
goto out;
|
|
|
|
iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|