541 lines
14 KiB
C
Executable file
541 lines
14 KiB
C
Executable file
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2015 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*/
|
|
|
|
#ifndef __ARM64_KVM_HYP_SWITCH_H__
|
|
#define __ARM64_KVM_HYP_SWITCH_H__
|
|
|
|
#include <hyp/adjust_pc.h>
|
|
|
|
#include <linux/arm-smccc.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/types.h>
|
|
#include <linux/jump_label.h>
|
|
#include <uapi/linux/psci.h>
|
|
|
|
#include <kvm/arm_psci.h>
|
|
|
|
#include <asm/barrier.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/extable.h>
|
|
#include <asm/kprobes.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_hyp.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/thread_info.h>
|
|
|
|
extern const char __hyp_panic_string[];
|
|
|
|
extern struct exception_table_entry __start___kvm_ex_table;
|
|
extern struct exception_table_entry __stop___kvm_ex_table;
|
|
|
|
/* Check whether the FP regs were dirtied while in the host-side run loop: */
|
|
static inline bool update_fp_enabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* When the system doesn't support FP/SIMD, we cannot rely on
|
|
* the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
|
|
* abort on the very first access to FP and thus we should never
|
|
* see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
|
|
* trap the accesses.
|
|
*/
|
|
if (!system_supports_fpsimd() ||
|
|
vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
|
|
vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
|
|
KVM_ARM64_FP_HOST);
|
|
|
|
return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
|
|
}
|
|
|
|
/* Save the 32-bit only FPSIMD system register state */
|
|
static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu_el1_is_32bit(vcpu))
|
|
return;
|
|
|
|
__vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
|
|
}
|
|
|
|
static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* We are about to set CPTR_EL2.TFP to trap all floating point
|
|
* register accesses to EL2, however, the ARM ARM clearly states that
|
|
* traps are only taken to EL2 if the operation would not otherwise
|
|
* trap to EL1. Therefore, always make sure that for 32-bit guests,
|
|
* we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
|
|
* If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
|
|
* it will cause an exception.
|
|
*/
|
|
if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
|
|
write_sysreg(1 << 30, fpexc32_el2);
|
|
isb();
|
|
}
|
|
}
|
|
|
|
static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
|
|
write_sysreg(1 << 15, hstr_el2);
|
|
|
|
/*
|
|
* Make sure we trap PMU access from EL0 to EL2. Also sanitize
|
|
* PMSELR_EL0 to make sure it never contains the cycle
|
|
* counter, which could make a PMXEVCNTR_EL0 access UNDEF at
|
|
* EL1 instead of being trapped to EL2.
|
|
*/
|
|
if (kvm_arm_support_pmu_v3()) {
|
|
write_sysreg(0, pmselr_el0);
|
|
write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
|
|
}
|
|
write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
|
|
}
|
|
|
|
static inline void __deactivate_traps_common(void)
|
|
{
|
|
write_sysreg(0, hstr_el2);
|
|
if (kvm_arm_support_pmu_v3())
|
|
write_sysreg(0, pmuserenr_el0);
|
|
}
|
|
|
|
static inline void ___activate_traps(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 hcr = vcpu->arch.hcr_el2;
|
|
|
|
if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
|
|
hcr |= HCR_TVM;
|
|
|
|
write_sysreg(hcr, hcr_el2);
|
|
|
|
if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
|
|
write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
|
|
}
|
|
|
|
static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* If we pended a virtual abort, preserve it until it gets
|
|
* cleared. See D1.14.3 (Virtual Interrupts) for details, but
|
|
* the crucial bit is "On taking a vSError interrupt,
|
|
* HCR_EL2.VSE is cleared to 0."
|
|
*/
|
|
if (vcpu->arch.hcr_el2 & HCR_VSE) {
|
|
vcpu->arch.hcr_el2 &= ~HCR_VSE;
|
|
vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
|
|
}
|
|
}
|
|
|
|
static inline bool __translate_far_to_hpfar(u64 far, u64 *hpfar)
|
|
{
|
|
u64 par, tmp;
|
|
|
|
/*
|
|
* Resolve the IPA the hard way using the guest VA.
|
|
*
|
|
* Stage-1 translation already validated the memory access
|
|
* rights. As such, we can use the EL1 translation regime, and
|
|
* don't have to distinguish between EL0 and EL1 access.
|
|
*
|
|
* We do need to save/restore PAR_EL1 though, as we haven't
|
|
* saved the guest context yet, and we may return early...
|
|
*/
|
|
par = read_sysreg_par();
|
|
if (!__kvm_at("s1e1r", far))
|
|
tmp = read_sysreg_par();
|
|
else
|
|
tmp = SYS_PAR_EL1_F; /* back to the guest */
|
|
write_sysreg(par, par_el1);
|
|
|
|
if (unlikely(tmp & SYS_PAR_EL1_F))
|
|
return false; /* Translation failed, back to guest */
|
|
|
|
/* Convert PAR to HPFAR format */
|
|
*hpfar = PAR_TO_HPFAR(tmp);
|
|
return true;
|
|
}
|
|
|
|
static inline bool __get_fault_info(u64 esr, struct kvm_vcpu_fault_info *fault)
|
|
{
|
|
u64 hpfar, far;
|
|
|
|
far = read_sysreg_el2(SYS_FAR);
|
|
|
|
/*
|
|
* The HPFAR can be invalid if the stage 2 fault did not
|
|
* happen during a stage 1 page table walk (the ESR_EL2.S1PTW
|
|
* bit is clear) and one of the two following cases are true:
|
|
* 1. The fault was due to a permission fault
|
|
* 2. The processor carries errata 834220
|
|
*
|
|
* Therefore, for all non S1PTW faults where we either have a
|
|
* permission fault or the errata workaround is enabled, we
|
|
* resolve the IPA using the AT instruction.
|
|
*/
|
|
if (!(esr & ESR_ELx_S1PTW) &&
|
|
(cpus_have_final_cap(ARM64_WORKAROUND_834220) ||
|
|
(esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
|
|
if (!__translate_far_to_hpfar(far, &hpfar))
|
|
return false;
|
|
} else {
|
|
hpfar = read_sysreg(hpfar_el2);
|
|
}
|
|
|
|
fault->far_el2 = far;
|
|
fault->hpfar_el2 = hpfar;
|
|
return true;
|
|
}
|
|
|
|
static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
|
|
{
|
|
u8 ec;
|
|
u64 esr;
|
|
|
|
esr = vcpu->arch.fault.esr_el2;
|
|
ec = ESR_ELx_EC(esr);
|
|
|
|
if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
|
|
return true;
|
|
|
|
return __get_fault_info(esr, &vcpu->arch.fault);
|
|
}
|
|
|
|
static inline void __hyp_sve_save_host(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct thread_struct *thread;
|
|
|
|
thread = container_of(vcpu->arch.host_fpsimd_state, struct thread_struct,
|
|
uw.fpsimd_state);
|
|
|
|
__sve_save_state(sve_pffr(thread), &vcpu->arch.host_fpsimd_state->fpsr);
|
|
}
|
|
|
|
static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
|
|
{
|
|
sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
|
|
__sve_restore_state(vcpu_sve_pffr(vcpu),
|
|
&vcpu->arch.ctxt.fp_regs.fpsr);
|
|
write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
|
|
}
|
|
|
|
/* Check for an FPSIMD/SVE trap and handle as appropriate */
|
|
static inline bool __hyp_handle_fpsimd(struct kvm_vcpu *vcpu)
|
|
{
|
|
bool sve_guest, sve_host;
|
|
u8 esr_ec;
|
|
u64 reg;
|
|
|
|
if (!system_supports_fpsimd())
|
|
return false;
|
|
|
|
if (system_supports_sve()) {
|
|
sve_guest = vcpu_has_sve(vcpu);
|
|
sve_host = vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE;
|
|
} else {
|
|
sve_guest = false;
|
|
sve_host = false;
|
|
}
|
|
|
|
esr_ec = kvm_vcpu_trap_get_class(vcpu);
|
|
if (esr_ec != ESR_ELx_EC_FP_ASIMD &&
|
|
esr_ec != ESR_ELx_EC_SVE)
|
|
return false;
|
|
|
|
/* Don't handle SVE traps for non-SVE vcpus here: */
|
|
if (!sve_guest && esr_ec != ESR_ELx_EC_FP_ASIMD)
|
|
return false;
|
|
|
|
/* Valid trap. Switch the context: */
|
|
if (has_vhe()) {
|
|
reg = CPACR_EL1_FPEN;
|
|
if (sve_guest)
|
|
reg |= CPACR_EL1_ZEN;
|
|
|
|
sysreg_clear_set(cpacr_el1, 0, reg);
|
|
} else {
|
|
reg = CPTR_EL2_TFP;
|
|
if (sve_guest)
|
|
reg |= CPTR_EL2_TZ;
|
|
|
|
sysreg_clear_set(cptr_el2, reg, 0);
|
|
}
|
|
isb();
|
|
|
|
if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
|
|
if (sve_host)
|
|
__hyp_sve_save_host(vcpu);
|
|
else
|
|
__fpsimd_save_state(vcpu->arch.host_fpsimd_state);
|
|
|
|
vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
|
|
}
|
|
|
|
if (sve_guest)
|
|
__hyp_sve_restore_guest(vcpu);
|
|
else
|
|
__fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
|
|
|
|
/* Skip restoring fpexc32 for AArch64 guests */
|
|
if (!(read_sysreg(hcr_el2) & HCR_RW))
|
|
write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
|
|
|
|
vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
|
|
int rt = kvm_vcpu_sys_get_rt(vcpu);
|
|
u64 val = vcpu_get_reg(vcpu, rt);
|
|
|
|
/*
|
|
* The normal sysreg handling code expects to see the traps,
|
|
* let's not do anything here.
|
|
*/
|
|
if (vcpu->arch.hcr_el2 & HCR_TVM)
|
|
return false;
|
|
|
|
switch (sysreg) {
|
|
case SYS_SCTLR_EL1:
|
|
write_sysreg_el1(val, SYS_SCTLR);
|
|
break;
|
|
case SYS_TTBR0_EL1:
|
|
write_sysreg_el1(val, SYS_TTBR0);
|
|
break;
|
|
case SYS_TTBR1_EL1:
|
|
write_sysreg_el1(val, SYS_TTBR1);
|
|
break;
|
|
case SYS_TCR_EL1:
|
|
write_sysreg_el1(val, SYS_TCR);
|
|
break;
|
|
case SYS_ESR_EL1:
|
|
write_sysreg_el1(val, SYS_ESR);
|
|
break;
|
|
case SYS_FAR_EL1:
|
|
write_sysreg_el1(val, SYS_FAR);
|
|
break;
|
|
case SYS_AFSR0_EL1:
|
|
write_sysreg_el1(val, SYS_AFSR0);
|
|
break;
|
|
case SYS_AFSR1_EL1:
|
|
write_sysreg_el1(val, SYS_AFSR1);
|
|
break;
|
|
case SYS_MAIR_EL1:
|
|
write_sysreg_el1(val, SYS_MAIR);
|
|
break;
|
|
case SYS_AMAIR_EL1:
|
|
write_sysreg_el1(val, SYS_AMAIR);
|
|
break;
|
|
case SYS_CONTEXTIDR_EL1:
|
|
write_sysreg_el1(val, SYS_CONTEXTIDR);
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
__kvm_skip_instr(vcpu);
|
|
return true;
|
|
}
|
|
|
|
static inline bool esr_is_ptrauth_trap(u32 esr)
|
|
{
|
|
u32 ec = ESR_ELx_EC(esr);
|
|
|
|
if (ec == ESR_ELx_EC_PAC)
|
|
return true;
|
|
|
|
if (ec != ESR_ELx_EC_SYS64)
|
|
return false;
|
|
|
|
switch (esr_sys64_to_sysreg(esr)) {
|
|
case SYS_APIAKEYLO_EL1:
|
|
case SYS_APIAKEYHI_EL1:
|
|
case SYS_APIBKEYLO_EL1:
|
|
case SYS_APIBKEYHI_EL1:
|
|
case SYS_APDAKEYLO_EL1:
|
|
case SYS_APDAKEYHI_EL1:
|
|
case SYS_APDBKEYLO_EL1:
|
|
case SYS_APDBKEYHI_EL1:
|
|
case SYS_APGAKEYLO_EL1:
|
|
case SYS_APGAKEYHI_EL1:
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
#define __ptrauth_save_key(ctxt, key) \
|
|
do { \
|
|
u64 __val; \
|
|
__val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \
|
|
ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val; \
|
|
__val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \
|
|
ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val; \
|
|
} while(0)
|
|
|
|
DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
|
|
|
|
static inline bool __hyp_handle_ptrauth(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpu_context *ctxt;
|
|
u64 val;
|
|
|
|
if (!vcpu_has_ptrauth(vcpu) ||
|
|
!esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
|
|
return false;
|
|
|
|
ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
|
|
__ptrauth_save_key(ctxt, APIA);
|
|
__ptrauth_save_key(ctxt, APIB);
|
|
__ptrauth_save_key(ctxt, APDA);
|
|
__ptrauth_save_key(ctxt, APDB);
|
|
__ptrauth_save_key(ctxt, APGA);
|
|
|
|
vcpu_ptrauth_enable(vcpu);
|
|
|
|
val = read_sysreg(hcr_el2);
|
|
val |= (HCR_API | HCR_APK);
|
|
write_sysreg(val, hcr_el2);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Return true when we were able to fixup the guest exit and should return to
|
|
* the guest, false when we should restore the host state and return to the
|
|
* main run loop.
|
|
*/
|
|
static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
/*
|
|
* Save PSTATE early so that we can evaluate the vcpu mode
|
|
* early on.
|
|
*/
|
|
vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
|
|
|
|
if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
|
|
vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
|
|
|
|
if (ARM_SERROR_PENDING(*exit_code) &&
|
|
ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
|
|
u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
|
|
|
|
/*
|
|
* HVC already have an adjusted PC, which we need to
|
|
* correct in order to return to after having injected
|
|
* the SError.
|
|
*
|
|
* SMC, on the other hand, is *trapped*, meaning its
|
|
* preferred return address is the SMC itself.
|
|
*/
|
|
if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
|
|
write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
|
|
}
|
|
|
|
/*
|
|
* We're using the raw exception code in order to only process
|
|
* the trap if no SError is pending. We will come back to the
|
|
* same PC once the SError has been injected, and replay the
|
|
* trapping instruction.
|
|
*/
|
|
if (*exit_code != ARM_EXCEPTION_TRAP)
|
|
goto exit;
|
|
|
|
if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
|
|
kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 &&
|
|
handle_tx2_tvm(vcpu))
|
|
goto guest;
|
|
|
|
/*
|
|
* We trap the first access to the FP/SIMD to save the host context
|
|
* and restore the guest context lazily.
|
|
* If FP/SIMD is not implemented, handle the trap and inject an
|
|
* undefined instruction exception to the guest.
|
|
* Similarly for trapped SVE accesses.
|
|
*/
|
|
if (__hyp_handle_fpsimd(vcpu))
|
|
goto guest;
|
|
|
|
if (__hyp_handle_ptrauth(vcpu))
|
|
goto guest;
|
|
|
|
if (!__populate_fault_info(vcpu))
|
|
goto guest;
|
|
|
|
if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
|
|
bool valid;
|
|
|
|
valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
|
|
kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
|
|
kvm_vcpu_dabt_isvalid(vcpu) &&
|
|
!kvm_vcpu_abt_issea(vcpu) &&
|
|
!kvm_vcpu_abt_iss1tw(vcpu);
|
|
|
|
if (valid) {
|
|
int ret = __vgic_v2_perform_cpuif_access(vcpu);
|
|
|
|
if (ret == 1)
|
|
goto guest;
|
|
|
|
/* Promote an illegal access to an SError.*/
|
|
if (ret == -1)
|
|
*exit_code = ARM_EXCEPTION_EL1_SERROR;
|
|
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
|
|
(kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
|
|
kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
|
|
int ret = __vgic_v3_perform_cpuif_access(vcpu);
|
|
|
|
if (ret == 1)
|
|
goto guest;
|
|
}
|
|
|
|
exit:
|
|
/* Return to the host kernel and handle the exit */
|
|
return false;
|
|
|
|
guest:
|
|
/* Re-enter the guest */
|
|
asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
|
|
return true;
|
|
}
|
|
|
|
static inline void __kvm_unexpected_el2_exception(void)
|
|
{
|
|
extern char __guest_exit_panic[];
|
|
unsigned long addr, fixup;
|
|
struct exception_table_entry *entry, *end;
|
|
unsigned long elr_el2 = read_sysreg(elr_el2);
|
|
|
|
entry = &__start___kvm_ex_table;
|
|
end = &__stop___kvm_ex_table;
|
|
|
|
while (entry < end) {
|
|
addr = (unsigned long)&entry->insn + entry->insn;
|
|
fixup = (unsigned long)&entry->fixup + entry->fixup;
|
|
|
|
if (addr != elr_el2) {
|
|
entry++;
|
|
continue;
|
|
}
|
|
|
|
write_sysreg(fixup, elr_el2);
|
|
return;
|
|
}
|
|
|
|
/* Trigger a panic after restoring the hyp context. */
|
|
write_sysreg(__guest_exit_panic, elr_el2);
|
|
}
|
|
|
|
#endif /* __ARM64_KVM_HYP_SWITCH_H__ */
|