kernel_samsung_a53x/drivers/rtc/rtc-s2mpu13.c
2024-06-15 16:02:09 -03:00

1434 lines
36 KiB
C
Executable file

/*
* rtc-s2mpu13.c
*
* Copyright (c) 2021 Samsung Electronics Co., Ltd
* http://www.samsung.com
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* 2013-12-11 Performance improvements and code clean up by
* Minsung Kim <ms925.kim@samsung.com>
*
*/
#include <linux/module.h>
#include <linux/gpio.h>
#include <linux/rtc.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/regmap.h>
#include <linux/platform_device.h>
#include <linux/mfd/samsung/rtc-s2mp.h>
#include <linux/mfd/samsung/s2mpu13.h>
#include <linux/mfd/samsung/s2mpu13-regulator.h>
#if IS_ENABLED(CONFIG_RTC_BOOT_ALARM) || IS_ENABLED(CONFIG_RTC_AUTO_PWRON)
#include <linux/reboot.h>
#include <linux/fs.h>
#include <soc/samsung/exynos-pmu-if.h>
#endif
#if IS_ENABLED(CONFIG_RTC_AUTO_PWRON)
#include <linux/alarmtimer.h>
#include <linux/uaccess.h>
#include <linux/ioctl.h>
#include <linux/sec_pon_alarm.h>
#endif
/*#define CONFIG_WEEKDAY_ALARM_ENABLE*/
struct s2m_rtc_info {
struct device *dev;
struct i2c_client *i2c;
struct i2c_client *pmic_i2c;
struct s2mpu13_dev *iodev;
struct rtc_device *rtc_dev;
struct mutex lock;
struct delayed_work irq_work;
#if IS_ENABLED(CONFIG_RTC_BOOT_ALARM) || IS_ENABLED(CONFIG_RTC_AUTO_PWRON)
struct delayed_work restart_work;
struct workqueue_struct *restart_wqueue;
#endif
int irq;
int smpl_irq;
#if IS_ENABLED(CONFIG_RTC_BOOT_ALARM) || IS_ENABLED(CONFIG_RTC_AUTO_PWRON)
int boot_alarm_irq;
bool boot_alarm_enabled;
#endif
bool use_irq;
bool wtsr_en;
bool smpl_en;
bool alarm_enabled;
u8 update_reg;
bool use_alarm_workaround;
bool alarm_check;
u8 wudr_mask;
u8 audr_mask;
int smpl_warn_info;
};
static struct wakeup_source *rtc_ws;
enum S2M_RTC_OP {
S2M_RTC_READ,
S2M_RTC_WRITE_TIME,
S2M_RTC_WRITE_ALARM,
};
#if IS_ENABLED(CONFIG_RTC_BOOT_ALARM) || IS_ENABLED(CONFIG_RTC_AUTO_PWRON)
#define POWER_SYSIP_INFORM3 0x080C
static unsigned int is_charging_mode;
static inline void rtc_time_to_tm(unsigned long time, struct rtc_time *tm)
{
rtc_time64_to_tm(time, tm);
}
static inline int rtc_tm_to_time(struct rtc_time *tm, unsigned long *time)
{
*time = rtc_tm_to_time64(tm);
return 0;
}
#endif
struct s2m_rtc_info *static_info;
int secure_debug_set_config(u8 addr, u8 config)
{
const char *config_bit[] = {"RTC_BOOTING", "RTC_SUSPEND", "RTC_RESUME", "RTC_SHUTDOWN", "RTC_POWEROFF"};
unsigned char val;
int ret = 0;
if (addr != RTC_REG_SECURE1 && addr != RTC_REG_SECURE2 &&
addr != RTC_REG_SECURE3 && addr != RTC_REG_SECURE4) {
pr_err("%s: wrong addr.(0x%02hhx)\n", __func__, addr);
return -1;
}
if (config != RTC_BOOTING && config != RTC_SUSPEND &&
config != RTC_RESUME && config != RTC_SHUTDOWN && config != RTC_POWEROFF) {
pr_err("%s: wrong config(0x%02hhx)\n", __func__, config);
return -1;
}
ret = s2mpu13_update_reg(static_info->i2c, addr, config, 0xF);
if (ret < 0) {
pr_err("%s: s2mpu13_update_reg failed\n", __func__);
return -1;
}
ret = s2mpu13_read_reg(static_info->i2c, addr, &val);
if (ret < 0) {
pr_err("%s: s2mpu13_read_reg failed\n", __func__);
return -1;
}
pr_info("%s: %s: 0x02%02hhx(0x%02hhx)\n", __func__, config_bit[config - RTC_BOOTING], addr, val);
return 0;
}
EXPORT_SYMBOL_GPL(secure_debug_set_config);
int secure_debug_read(u8 addr, u8 bit)
{
int ret = 0;
unsigned char val;
if (addr != RTC_REG_SECURE1 && addr != RTC_REG_SECURE2 &&
addr != RTC_REG_SECURE3 && addr != RTC_REG_SECURE4)
return -1;
if (bit > 7 || bit < 0)
return -1;
ret = s2mpu13_read_reg(static_info->i2c, addr, &val);
if (ret < 0)
goto err;
val = (val >> bit) & 0x1;
return val;
err:
return -1;
}
EXPORT_SYMBOL_GPL(secure_debug_read);
void secure_debug_write(u8 addr, u8 bit, u8 val)
{
int ret = 0;
if (addr != RTC_REG_SECURE1 && addr != RTC_REG_SECURE2 &&
addr != RTC_REG_SECURE3 && addr != RTC_REG_SECURE4)
return;
if (bit > 7 || bit < 0)
return;
if (val != 0 && val != 1)
return;
ret = s2mpu13_update_reg(static_info->i2c, addr, val << bit, 1 << bit);
if (ret < 0)
return;
}
EXPORT_SYMBOL_GPL(secure_debug_write);
void secure_debug_clear(void)
{
int ret = 0, i = 0;
for (i = RTC_REG_SECURE1; i <= RTC_REG_SECURE4; i++) {
ret = s2mpu13_write_reg(static_info->i2c, i, 0x00);
if (ret < 0)
return;
}
}
EXPORT_SYMBOL_GPL(secure_debug_clear);
static void s2m_data_to_tm(u8 *data, struct rtc_time *tm)
{
// tm->tm_msec = (data[RTC_MSEC] & 0x0f) + (data[RTC_MSEC] & 0xf0) * 10;
tm->tm_sec = data[RTC_SEC] & 0x7f;
tm->tm_min = data[RTC_MIN] & 0x7f;
tm->tm_hour = data[RTC_HOUR] & 0x1f;
tm->tm_wday = __fls(data[RTC_WEEKDAY] & 0x7f);
tm->tm_mday = data[RTC_DATE] & 0x1f;
tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
tm->tm_year = (data[RTC_YEAR] & 0x7f) + 100;
tm->tm_yday = 0;
tm->tm_isdst = 0;
}
static int s2m_tm_to_data(struct rtc_time *tm, u8 *data)
{
// data[RTC_MSEC] = ((tm->tm_msec / 10) << 4) | (tm->tm_msec % 10);
data[RTC_SEC] = tm->tm_sec;
data[RTC_MIN] = tm->tm_min;
if (tm->tm_hour >= 12)
data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
else
data[RTC_HOUR] = tm->tm_hour;
data[RTC_WEEKDAY] = BIT(tm->tm_wday);
data[RTC_DATE] = tm->tm_mday;
data[RTC_MONTH] = tm->tm_mon + 1;
data[RTC_YEAR] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;
if (tm->tm_year < 100) {
pr_warn("%s: SEC RTC cannot handle the year %d\n", __func__,
1900 + tm->tm_year);
return -EINVAL;
}
return 0;
}
static int s2m_rtc_update(struct s2m_rtc_info *info,
enum S2M_RTC_OP op)
{
u8 data;
int ret;
if (!info || !info->iodev) {
pr_err("%s: Invalid argument\n", __func__);
return -EINVAL;
}
switch (op) {
case S2M_RTC_READ:
data = RTC_RUDR_MASK;
break;
case S2M_RTC_WRITE_TIME:
data = RTC_WUDR_MASK_REV;
break;
case S2M_RTC_WRITE_ALARM:
data = RTC_AUDR_MASK_REV;
break;
default:
dev_err(info->dev, "%s: invalid op(%d)\n", __func__, op);
return -EINVAL;
}
data |= info->update_reg;
ret = s2mpu13_write_reg(info->i2c, S2MP_RTC_REG_UPDATE, data);
if (ret < 0)
dev_err(info->dev, "%s: fail to write update reg(%d,%u)\n",
__func__, ret, data);
else
usleep_range(1000, 1005);
return ret;
}
static int s2m_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct s2m_rtc_info *info = dev_get_drvdata(dev);
u8 data[NR_RTC_CNT_REGS];
int ret;
mutex_lock(&info->lock);
ret = s2m_rtc_update(info, S2M_RTC_READ);
if (ret < 0)
goto out;
ret = s2mpu13_bulk_read(info->i2c, S2MP_RTC_REG_SEC, NR_RTC_CNT_REGS,
data);
if (ret < 0) {
dev_err(info->dev, "%s: fail to read time reg(%d)\n", __func__,
ret);
goto out;
}
dev_info(info->dev, "%s: %d-%02d-%02d %02d:%02d:%02d(0x%02hhx)%s\n",
__func__, data[RTC_YEAR] + 2000, data[RTC_MONTH],
data[RTC_DATE], data[RTC_HOUR] & 0x1f, data[RTC_MIN],
data[RTC_SEC], data[RTC_WEEKDAY],
data[RTC_HOUR] & HOUR_PM_MASK ? "PM" : "AM");
s2m_data_to_tm(data, tm);
ret = rtc_valid_tm(tm);
out:
mutex_unlock(&info->lock);
return ret;
}
static int s2m_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct s2m_rtc_info *info = dev_get_drvdata(dev);
u8 data[NR_RTC_CNT_REGS];
int ret;
ret = s2m_tm_to_data(tm, data);
if (ret < 0)
return ret;
dev_info(info->dev, "%s: %d-%02d-%02d %02d:%02d:%02d(0x%02hhx)%s\n",
__func__, data[RTC_YEAR] + 2000, data[RTC_MONTH],
data[RTC_DATE], data[RTC_HOUR] & 0x1f, data[RTC_MIN],
data[RTC_SEC], data[RTC_WEEKDAY],
data[RTC_HOUR] & HOUR_PM_MASK ? "PM" : "AM");
mutex_lock(&info->lock);
ret = s2mpu13_bulk_write(info->i2c, S2MP_RTC_REG_SEC, NR_RTC_CNT_REGS,
data);
if (ret < 0) {
dev_err(info->dev, "%s: fail to write time reg(%d)\n", __func__,
ret);
goto out;
}
ret = s2m_rtc_update(info, S2M_RTC_WRITE_TIME);
out:
mutex_unlock(&info->lock);
return ret;
}
static int s2m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct s2m_rtc_info *info = dev_get_drvdata(dev);
u8 data[NR_RTC_CNT_REGS];
u8 reg, val;
int ret;
mutex_lock(&info->lock);
ret = s2m_rtc_update(info, S2M_RTC_READ);
if (ret < 0)
goto out;
ret = s2mpu13_bulk_read(info->i2c, S2MP_RTC_REG_A0SEC, NR_RTC_CNT_REGS,
data);
if (ret < 0) {
dev_err(info->dev, "%s:%d fail to read alarm reg(%d)\n",
__func__, __LINE__, ret);
goto out;
}
s2m_data_to_tm(data, &alrm->time);
dev_info(info->dev, "%s: %d-%02d-%02d %02d:%02d:%02d(%d)\n", __func__,
alrm->time.tm_year + 1900, alrm->time.tm_mon + 1,
alrm->time.tm_mday, alrm->time.tm_hour,
alrm->time.tm_min, alrm->time.tm_sec,
alrm->time.tm_wday);
alrm->enabled = info->alarm_enabled;
alrm->pending = 0;
switch (info->iodev->device_type) {
case S2MPU13X:
reg = S2MPU13_PMIC_REG_STATUS2;
break;
default:
/* If this happens the core funtion has a problem */
BUG();
}
ret = s2mpu13_read_reg(info->pmic_i2c, reg, &val); /* i2c for PM */
if (ret < 0) {
dev_err(info->dev, "%s:%d fail to read STATUS2 reg(%d)\n",
__func__, __LINE__, ret);
goto out;
}
if (val & RTCA0E)
alrm->pending = 1;
out:
mutex_unlock(&info->lock);
return ret;
}
static int s2m_rtc_set_alarm_enable(struct s2m_rtc_info *info, bool enabled)
{
if (!info->use_irq)
return -EPERM;
if (enabled && !info->alarm_enabled) {
info->alarm_enabled = true;
enable_irq(info->irq);
} else if (!enabled && info->alarm_enabled) {
info->alarm_enabled = false;
disable_irq(info->irq);
}
return 0;
}
static int s2m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct s2m_rtc_info *info = dev_get_drvdata(dev);
u8 data[NR_RTC_CNT_REGS];
int ret, i;
mutex_lock(&info->lock);
ret = s2m_tm_to_data(&alrm->time, data);
if (ret < 0)
goto out;
dev_info(info->dev, "%s: %d-%02d-%02d %02d:%02d:%02d(0x%02hhx)%s\n",
__func__, data[RTC_YEAR] + 2000, data[RTC_MONTH],
data[RTC_DATE], data[RTC_HOUR] & 0x1f, data[RTC_MIN],
data[RTC_SEC], data[RTC_WEEKDAY],
data[RTC_HOUR] & HOUR_PM_MASK ? "PM" : "AM");
if (info->alarm_check) {
for (i = 0; i < NR_RTC_CNT_REGS; i++)
data[i] &= ~ALARM_ENABLE_MASK;
ret = s2mpu13_bulk_write(info->i2c, S2MP_RTC_REG_A0SEC, NR_RTC_CNT_REGS,
data);
if (ret < 0) {
dev_err(info->dev, "%s: fail to disable alarm reg(%d)\n",
__func__, ret);
goto out;
}
ret = s2m_rtc_update(info, S2M_RTC_WRITE_ALARM);
if (ret < 0)
goto out;
}
for (i = 0; i < NR_RTC_CNT_REGS; i++)
data[i] |= ALARM_ENABLE_MASK;
ret = s2mpu13_bulk_write(info->i2c, S2MP_RTC_REG_A0SEC, NR_RTC_CNT_REGS,
data);
if (ret < 0) {
dev_err(info->dev, "%s: fail to write alarm reg(%d)\n",
__func__, ret);
goto out;
}
ret = s2m_rtc_update(info, S2M_RTC_WRITE_ALARM);
if (ret < 0)
goto out;
ret = s2m_rtc_set_alarm_enable(info, alrm->enabled);
out:
mutex_unlock(&info->lock);
return ret;
}
static int s2m_rtc_alarm_irq_enable(struct device *dev,
unsigned int enabled)
{
struct s2m_rtc_info *info = dev_get_drvdata(dev);
int ret;
mutex_lock(&info->lock);
ret = s2m_rtc_set_alarm_enable(info, enabled);
mutex_unlock(&info->lock);
return ret;
}
static irqreturn_t s2m_rtc_alarm_irq(int irq, void *data)
{
struct s2m_rtc_info *info = data;
if (!info->rtc_dev)
return IRQ_HANDLED;
dev_info(info->dev, "%s:irq(%d)\n", __func__, irq);
rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
__pm_wakeup_event(rtc_ws, 500);
return IRQ_HANDLED;
}
#if IS_ENABLED(CONFIG_RTC_BOOT_ALARM) || IS_ENABLED(CONFIG_RTC_AUTO_PWRON)
static int s2m_rtc_stop_boot_alarm0(struct s2m_rtc_info *info)
{
u8 data[7];
int ret, i;
struct rtc_time tm;
ret = s2mpu13_bulk_read(info->i2c, S2MP_RTC_REG_A0SEC, NR_RTC_CNT_REGS, data);
if (ret < 0)
return ret;
s2m_data_to_tm(data, &tm);
dev_info(info->dev, "%s: %d-%02d-%02d %02d:%02d:%02d(%d)\n", __func__,
1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
for (i = 0; i < 7; i++)
data[i] &= ~ALARM_ENABLE_MASK;
ret = s2mpu13_bulk_write(info->i2c, S2MP_RTC_REG_A0SEC, NR_RTC_CNT_REGS, data);
if (ret < 0)
return ret;
ret = s2m_rtc_update(info, S2M_RTC_WRITE_ALARM);
return ret;
}
static int s2m_rtc_stop_boot_alarm(struct s2m_rtc_info *info)
{
u8 data[7];
int ret, i;
struct rtc_time tm;
ret = s2mpu13_bulk_read(info->i2c, S2MP_RTC_REG_A1SEC, NR_RTC_CNT_REGS, data);
if (ret < 0)
return ret;
s2m_data_to_tm(data, &tm);
dev_info(info->dev, "%s: %d-%02d-%02d %02d:%02d:%02d(%d)\n", __func__,
1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
for (i = 0; i < 7; i++)
data[i] &= ~ALARM_ENABLE_MASK;
ret = s2mpu13_bulk_write(info->i2c, S2MP_RTC_REG_A1SEC, NR_RTC_CNT_REGS, data);
if (ret < 0)
return ret;
ret = s2m_rtc_update(info, S2M_RTC_WRITE_ALARM);
return ret;
}
static int s2m_rtc_start_boot_alarm(struct s2m_rtc_info *info)
{
int ret;
u8 data[7];
struct rtc_time tm;
ret = s2mpu13_bulk_read(info->i2c, S2MP_RTC_REG_A1SEC, NR_RTC_CNT_REGS, data);
if (ret < 0)
return ret;
s2m_data_to_tm(data, &tm);
dev_info(info->dev, "%s: %d-%02d-%02d %02d:%02d:%02d(%d)\n", __func__,
1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
data[RTC_SEC] |= ALARM_ENABLE_MASK;
data[RTC_MIN] |= ALARM_ENABLE_MASK;
data[RTC_HOUR] |= ALARM_ENABLE_MASK;
data[RTC_WEEKDAY] &= 0x00;
if (data[RTC_DATE] & 0x1F)
data[RTC_DATE] |= ALARM_ENABLE_MASK;
if (data[RTC_MONTH] & 0x0F)
data[RTC_MONTH] |= ALARM_ENABLE_MASK;
if (data[RTC_YEAR] & 0x7F)
data[RTC_YEAR] |= ALARM_ENABLE_MASK;
ret = s2mpu13_bulk_write(info->i2c, S2MP_RTC_REG_A1SEC, NR_RTC_CNT_REGS, data);
if (ret < 0)
return ret;
ret = s2m_rtc_update(info, S2M_RTC_WRITE_ALARM);
return ret;
}
#if IS_ENABLED(CONFIG_RTC_BOOT_ALARM)
static int s2m_rtc_read_boot_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct s2m_rtc_info *info = dev_get_drvdata(dev);
u8 data[NR_RTC_CNT_REGS];
u8 reg, val;
int ret;
mutex_lock(&info->lock);
ret = s2m_rtc_update(info, S2M_RTC_READ);
if (ret < 0)
goto out;
ret = s2mpu13_bulk_read(info->i2c, S2MP_RTC_REG_A1SEC, NR_RTC_CNT_REGS, data);
if (ret < 0) {
dev_err(info->dev, "%s: %d fail to read alarm1 reg(%d)\n", __func__, __LINE__, ret);
goto out;
}
s2m_data_to_tm(data, &alrm->time);
dev_info(info->dev, "%s: %d-%02d-%02d %02d:%02d:%02d(%d)\n", __func__,
alrm->time.tm_year + 1900, alrm->time.tm_mon + 1,
alrm->time.tm_mday, alrm->time.tm_hour,
alrm->time.tm_min, alrm->time.tm_sec,
alrm->time.tm_wday);
//alrm->enabled = info->alarm_enabled;
alrm->enabled = info->boot_alarm_enabled; /*This is not bootalarm status, it is alarm status*/
alrm->pending = 0;
switch (info->iodev->device_type) {
case S2MPU13X:
reg = S2MPU13_PMIC_REG_STATUS2;
break;
default:
BUG();
}
ret = s2mpu13_read_reg(info->pmic_i2c, reg, &val);
if (ret < 0) {
dev_err(info->dev, "%s: %d fail to read STATUS2 reg(%d)\n", __func__, __LINE__, ret);
goto out;
}
if (val & RTCA1E)
alrm->pending = 1;
out:
mutex_unlock(&info->lock);
return ret;
}
#endif
/*original s2m_rtc_set_boot_alarm() function*/
static int _s2m_rtc_set_boot_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct s2m_rtc_info *info = dev_get_drvdata(dev);
u8 data[7];
int ret;
mutex_lock(&info->lock);
ret = s2m_tm_to_data(&alrm->time, data);
if (ret < 0)
goto out;
dev_info(info->dev, "%s: %d-%02d-%02d %02d:%02d:%02d(0x%02x)%s, [%s]\n",
__func__, data[RTC_YEAR] + 2000, data[RTC_MONTH],
data[RTC_DATE], data[RTC_HOUR] & 0x1F, data[RTC_MIN],
data[RTC_SEC], data[RTC_WEEKDAY],
data[RTC_HOUR] & HOUR_PM_MASK ? "PM" : "AM",
alrm->enabled ? "enabled" : "disabled");
ret = s2m_rtc_stop_boot_alarm(info);
if (ret < 0)
return ret;
ret = s2mpu13_read_reg(info->i2c, S2MP_RTC_REG_UPDATE, &info->update_reg);
if (ret < 0) {
dev_err(info->dev, "%s: read fail\n", __func__);
return ret;
}
if (alrm->enabled)
info->update_reg |= RTC_WAKE_MASK;
else
info->update_reg &= ~RTC_WAKE_MASK;
ret = s2mpu13_write_reg(info->i2c, S2MP_RTC_REG_UPDATE, (char)info->update_reg);
if (ret < 0)
dev_err(info->dev, "%s: fail to write update reg(%d)\n", __func__, ret);
else
usleep_range(1000, 1005);
ret = s2mpu13_bulk_write(info->i2c, S2MP_RTC_REG_A1SEC, NR_RTC_CNT_REGS, data);
if (ret < 0)
return ret;
ret = s2m_rtc_update(info, S2M_RTC_WRITE_ALARM);
if (ret < 0)
return ret;
if (alrm->enabled)
ret = s2m_rtc_start_boot_alarm(info);
out:
mutex_unlock(&info->lock);
return ret;
}
static int _s2m_rtc_disable_boot_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct s2m_rtc_info *info = dev_get_drvdata(dev);
int ret;
mutex_lock(&info->lock);
/*stop alarm*/
ret = s2m_rtc_stop_boot_alarm(info);
if (ret < 0) {
dev_err(info->dev, "%s: stop_boot_alarm failed\n", __func__);
goto out;
}
ret = s2mpu13_read_reg(info->i2c, S2MP_RTC_REG_UPDATE, &info->update_reg);
if (ret < 0) {
dev_err(info->dev, "%s: read fail\n", __func__);
goto out;
}
/*disable RTCWAKE*/
info->update_reg &= ~RTC_WAKE_MASK;
ret = s2mpu13_write_reg(info->i2c, S2MP_RTC_REG_UPDATE, (char)info->update_reg);
if (ret < 0)
dev_err(info->dev, "%s: fail to write update reg(%d)\n", __func__, ret);
out:
mutex_unlock(&info->lock);
return ret;
}
static int s2m_rtc_set_boot_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
int ret;
struct s2m_rtc_info *info = dev_get_drvdata(dev);
info->boot_alarm_enabled = alrm->enabled;
/*if get disabled bootalarm, directly stop, do not set time*/
if (!alrm->enabled)
ret = _s2m_rtc_disable_boot_alarm(dev, alrm);
else
ret = _s2m_rtc_set_boot_alarm(dev, alrm);
return ret;
}
static void s2m_rtc_restart_work_func(struct work_struct *work)
{
kernel_restart(NULL);
}
static int s2m_rtc_set_restart_wqueue(struct s2m_rtc_info *info)
{
info->restart_wqueue = create_singlethread_workqueue("rtc-restart-wqueue");
if (!info->restart_wqueue) {
pr_err("%s: fail to create workqueue\n", __func__);
return -EINVAL;
}
INIT_DELAYED_WORK(&info->restart_work, s2m_rtc_restart_work_func);
return 0;
}
static irqreturn_t s2m_rtc_boot_alarm_irq(int irq, void *data)
{
struct s2m_rtc_info *info = data;
dev_info(info->dev, "%s: irq(%d)\n", __func__, irq);
rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
__pm_wakeup_event(rtc_ws, 500);
#if IS_ENABLED(CONFIG_RTC_AUTO_PWRON)
is_charging_mode = pon_alarm_get_lpcharge();
#endif
dev_info(info->dev, "%s: is_charging_mode(%d)\n", __func__, is_charging_mode);
if (info->boot_alarm_enabled) {
if (is_charging_mode)
queue_delayed_work(info->restart_wqueue, &info->restart_work, 1);
else {
info->boot_alarm_enabled = 0;
info->update_reg &= ~RTC_WAKE_MASK;
s2mpu13_write_reg(info->i2c, S2MP_RTC_REG_UPDATE, (char)info->update_reg);
}
}
return IRQ_HANDLED;
}
#if IS_ENABLED(CONFIG_RTC_BOOT_ALARM)
static ssize_t bootalarm_show(struct device *dev, struct device_attribute *attr, char *buf)
{
ssize_t retval;
struct rtc_wkalrm alarm;
struct rtc_device *rtc = to_rtc_device(dev);
/* Don't show disabled alarms. For uniformity, RTC alarms are
* conceptually one-shot, even though some common RTCs (on PCs)
* don't actually work that way.
*
* NOTE: RTC implementations where the alarm doesn't match an
* exact YYYY-MM-DD HH:MM[:SS] date *must* disable their RTC
* alarms after they trigger, to ensure one-shot semantics.
*/
retval = mutex_lock_interruptible(&rtc->ops_lock);
if (retval)
return retval;
retval = s2m_rtc_read_boot_alarm(rtc->dev.parent, &alarm);
mutex_unlock(&rtc->ops_lock);
if (retval == 0) {
retval = sprintf(buf, "%04d/%02d/%02d %02d:%02d:%02d(%d) [%s, %s]\n",
alarm.time.tm_year + 1900, alarm.time.tm_mon + 1, alarm.time.tm_mday,
alarm.time.tm_hour, alarm.time.tm_min, alarm.time.tm_sec,
alarm.time.tm_wday,
((alarm.enabled == 1) ? "Enable" : "Disable"),
((alarm.pending == 1) ? "Pending" : "Not Pending"));
}
return retval;
}
static ssize_t bootalarm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t n)
{
ssize_t retval;
unsigned long now, alrm_long;
struct rtc_wkalrm alarm;
struct rtc_device *rtc = to_rtc_device(dev);
char *buf_ptr;
int adjust = 0;
int ret;
/* Only request alarms to be triggered in the future.
* by write another time, e.g. 0 meaning Jan 1 1970 UTC.
*/
retval = rtc_read_time(rtc, &alarm.time);
if (retval < 0)
return retval;
now = rtc_tm_to_time64(&alarm.time);
buf_ptr = (char *)buf;
if (*buf_ptr == '+') {
buf_ptr++;
adjust = 1;
}
ret = kstrtoul(buf_ptr, 0, &alrm_long);
if (ret) {
pr_info("%s: kstrtoul error\n", __func__);
return -1;
}
if (alrm_long == 0)
alarm.enabled = 0;
else
alarm.enabled = 1;
if (adjust)
alrm_long += now;
rtc_time64_to_tm(alrm_long, &alarm.time);
retval = mutex_lock_interruptible(&rtc->ops_lock);
if (retval)
return retval;
retval = s2m_rtc_set_boot_alarm(rtc->dev.parent, &alarm);
mutex_unlock(&rtc->ops_lock);
return (retval < 0) ? retval : n;
}
static DEVICE_ATTR_RW(bootalarm);
static struct attribute *s2mpu13_rtc_attrs[] = {
&dev_attr_bootalarm.attr,
NULL
};
static const struct attribute_group s2mpu13_rtc_sysfs_files = {
.attrs = s2mpu13_rtc_attrs,
};
#endif
#if IS_ENABLED(CONFIG_RTC_AUTO_PWRON)
static int s2m_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
{
int retval = 0;
struct alarm_timespec data;
struct rtc_wkalrm alm;
pr_info("%s: cmd=%08x\n", __func__, cmd);
switch (ANDROID_ALARM_BASE_CMD(cmd)) {
case ANDROID_ALARM_SET_ALARM_BOOT:
if (copy_from_user(data.alarm, (void __user *)arg, 14)) {
retval = -EFAULT;
pr_err("%s: set ret=%s\n", __func__, retval);
return retval;
}
pon_alarm_parse_data(data.alarm, &alm);
retval = s2m_rtc_set_boot_alarm(dev, &alm);
break;
}
return retval;
}
#endif
#endif
static const struct rtc_class_ops s2m_rtc_ops = {
#if IS_ENABLED(CONFIG_RTC_AUTO_PWRON)
.ioctl = s2m_rtc_ioctl,
#endif
.read_time = s2m_rtc_read_time,
.set_time = s2m_rtc_set_time,
.read_alarm = s2m_rtc_read_alarm,
.set_alarm = s2m_rtc_set_alarm,
.alarm_irq_enable = s2m_rtc_alarm_irq_enable,
};
static void s2m_rtc_optimize_osc(struct s2m_rtc_info *info,
struct s2mpu13_platform_data *pdata)
{
int ret = 0;
/* edit option for OSC_BIAS_UP */
if (pdata->osc_bias_up >= 0) {
ret = s2mpu13_update_reg(info->i2c, S2MP_RTC_REG_CAPSEL,
pdata->osc_bias_up << OSC_BIAS_UP_SHIFT,
OSC_BIAS_UP_MASK);
if (ret < 0) {
dev_err(info->dev, "%s: fail to write OSC_BIAS_UP(%d)\n",
__func__, pdata->osc_bias_up);
return;
}
}
/* edit option for CAP_SEL */
if (pdata->cap_sel >= 0) {
ret = s2mpu13_update_reg(info->i2c, S2MP_RTC_REG_CAPSEL,
pdata->cap_sel << CAP_SEL_SHIFT, CAP_SEL_MASK);
if (ret < 0) {
dev_err(info->dev, "%s: fail to write CAP_SEL(%d)\n",
__func__, pdata->cap_sel);
return;
}
}
/* edit option for OSC_CTRL */
if (pdata->osc_xin >= 0) {
ret = s2mpu13_update_reg(info->i2c, S2MP_RTC_REG_OSCCTRL,
pdata->osc_xin << OSC_XIN_SHIFT, OSC_XIN_MASK);
if (ret < 0) {
dev_err(info->dev, "%s: fail to write OSC_CTRL(%d)\n",
__func__, pdata->osc_xin);
return;
}
}
if (pdata->osc_xout >= 0) {
ret = s2mpu13_update_reg(info->i2c, S2MP_RTC_REG_OSCCTRL,
pdata->osc_xout << OSC_XOUT_SHIFT, OSC_XOUT_MASK);
if (ret < 0) {
dev_err(info->dev, "%s: fail to write OSC_CTRL(%d)\n",
__func__, pdata->osc_xout);
return;
}
}
}
static bool s2m_is_jigonb_low(struct s2m_rtc_info *info)
{
int ret, reg;
u8 val, mask;
switch (info->iodev->device_type) {
case S2MPU13X:
reg = S2MPU13_PMIC_REG_STATUS1;
mask = BIT(1);
break;
default:
BUG();
}
ret = s2mpu13_read_reg(info->pmic_i2c, reg, &val);
if (ret < 0) {
dev_err(info->dev, "%s: fail to read status1 reg(%d)\n",
__func__, ret);
return false;
}
return !(val & mask);
}
static irqreturn_t s2m_smpl_warn_irq_handler(int irq, void *data)
{
struct s2m_rtc_info *info = data;
if (!info->rtc_dev)
return IRQ_HANDLED;
if (gpio_get_value(info->smpl_warn_info) & 0x1)
return IRQ_HANDLED;
dev_info(info->dev, "%s: SMPL_WARN\n", __func__);
disable_irq_nosync(info->smpl_irq);
queue_delayed_work(system_freezable_wq, &info->irq_work,
msecs_to_jiffies(100));
return IRQ_HANDLED;
}
#if IS_ENABLED(CONFIG_SOC_EXYNOS9830_EVT0)
void exynos9830_smpl_warn_sw_release(void);
#endif
static void exynos_smpl_warn_work(struct work_struct *work)
{
struct s2m_rtc_info *info = container_of(work,
struct s2m_rtc_info, irq_work.work);
int state = 0;
state = (gpio_get_value(info->smpl_warn_info) & 0x1);
if (!state) {
queue_delayed_work(system_freezable_wq, &info->irq_work,
msecs_to_jiffies(100));
} else {
dev_info(info->dev, "%s: SMPL_WARN polling End!\n", __func__);
#if IS_ENABLED(CONFIG_SOC_EXYNOS9830_EVT0)
exynos9830_smpl_warn_sw_release();
#endif
enable_irq(info->smpl_irq);
}
}
static void s2m_rtc_enable_wtsr_smpl(struct s2m_rtc_info *info,
struct s2mpu13_platform_data *pdata)
{
u8 val;
int ret;
if (pdata->wtsr_smpl->check_jigon && s2m_is_jigonb_low(info))
pdata->wtsr_smpl->smpl_en = false;
val = (pdata->wtsr_smpl->wtsr_en << WTSR_EN_SHIFT)
| (pdata->wtsr_smpl->smpl_en << SMPL_EN_SHIFT)
| WTSR_TIMER_BITS(pdata->wtsr_smpl->wtsr_timer_val)
| SMPL_TIMER_BITS(pdata->wtsr_smpl->smpl_timer_val);
dev_info(info->dev, "%s: WTSR: %s, SMPL: %s\n", __func__,
pdata->wtsr_smpl->wtsr_en ? "enable" : "disable",
pdata->wtsr_smpl->smpl_en ? "enable" : "disable");
ret = s2mpu13_write_reg(info->i2c, S2MP_RTC_REG_WTSR_SMPL, val);
if (ret < 0) {
dev_err(info->dev, "%s: fail to write WTSR/SMPL reg(%d)\n",
__func__, ret);
return;
}
info->wtsr_en = pdata->wtsr_smpl->wtsr_en;
info->smpl_en = pdata->wtsr_smpl->smpl_en;
}
static void s2m_rtc_disable_wtsr_smpl(struct s2m_rtc_info *info,
struct s2mpu13_platform_data *pdata)
{
int ret;
dev_info(info->dev, "%s: disable SMPL & WTSR\n", __func__);
ret = s2mpu13_update_reg(info->i2c, S2MP_RTC_REG_WTSR_SMPL, 0,
WTSR_EN_MASK | SMPL_EN_MASK);
if (ret < 0)
dev_err(info->dev, "%s: fail to update WTSR reg(%d)\n",
__func__, ret);
}
static int s2m_rtc_init_reg(struct s2m_rtc_info *info,
struct s2mpu13_platform_data *pdata)
{
u8 data, update_val, ctrl_val, capsel_val;
int ret;
#if IS_ENABLED(CONFIG_RTC_BOOT_ALARM) || IS_ENABLED(CONFIG_RTC_AUTO_PWRON)
u8 data_alrm1[7];
struct rtc_time alrm, now;
unsigned long now_int, alrm_int;
ret = s2mpu13_bulk_read(info->i2c, S2MP_RTC_REG_A1SEC, NR_RTC_CNT_REGS, data_alrm1);
if (ret < 0)
return ret;
s2m_data_to_tm(data_alrm1, &alrm);
dev_info(info->dev, "%s [boot alarm]: %d-%02d-%02d %02d:%02d:%02d(%d)\n", __func__,
alrm.tm_year + 1900, alrm.tm_mon + 1,
alrm.tm_mday, alrm.tm_hour,
alrm.tm_min, alrm.tm_sec,
alrm.tm_wday);
#endif
ret = s2mpu13_read_reg(info->i2c, S2MP_RTC_REG_UPDATE, &update_val);
if (ret < 0) {
dev_err(info->dev, "%s: fail to read update reg(%d)\n",
__func__, ret);
return ret;
}
#if IS_ENABLED(CONFIG_RTC_BOOT_ALARM) || IS_ENABLED(CONFIG_RTC_AUTO_PWRON)
info->boot_alarm_enabled = (update_val & RTC_WAKE_MASK) ? 1 : 0;
if (info->boot_alarm_enabled) {
s2m_rtc_read_time(info->dev, &now);
now_int = rtc_tm_to_time64(&now);
alrm_int = rtc_tm_to_time64(&alrm);
if (now_int >= alrm_int) {
info->boot_alarm_enabled = 0;
update_val &= ~RTC_WAKE_MASK;
}
}
#endif
info->update_reg =
update_val & ~(info->wudr_mask | RTC_FREEZE_MASK | RTC_RUDR_MASK | info->audr_mask);
ret = s2mpu13_write_reg(info->i2c, S2MP_RTC_REG_UPDATE, info->update_reg);
if (ret < 0) {
dev_err(info->dev, "%s: fail to write update reg(%d)\n",
__func__, ret);
return ret;
}
s2m_rtc_update(info, S2M_RTC_READ);
ret = s2mpu13_read_reg(info->i2c, S2MP_RTC_REG_CTRL, &ctrl_val);
if (ret < 0) {
dev_err(info->dev, "%s: fail to read control reg(%d)\n",
__func__, ret);
return ret;
}
ret = s2mpu13_read_reg(info->i2c, S2MP_RTC_REG_CAPSEL, &capsel_val);
if (ret < 0) {
dev_err(info->dev, "%s: fail to read cap_sel reg(%d)\n",
__func__, ret);
return ret;
}
/* If the value of RTC_CTRL register is 0, RTC registers were reset */
if ((ctrl_val & MODEL24_MASK) && ((capsel_val & 0xf0) == 0xf0))
return 0;
/* Set RTC control register : Binary mode, 24hour mode */
data = MODEL24_MASK;
ret = s2mpu13_write_reg(info->i2c, S2MP_RTC_REG_CTRL, data);
if (ret < 0) {
dev_err(info->dev, "%s: fail to write CTRL reg(%d)\n",
__func__, ret);
return ret;
}
ret = s2m_rtc_update(info, S2M_RTC_WRITE_ALARM);
if (ret < 0)
return ret;
capsel_val |= 0xf0;
ret = s2mpu13_write_reg(info->i2c, S2MP_RTC_REG_CAPSEL, capsel_val);
if (ret < 0) {
dev_err(info->dev, "%s: fail to write CAP_SEL reg(%d)\n",
__func__, ret);
return ret;
}
if (pdata->init_time) {
dev_info(info->dev, "%s: initialize RTC time\n", __func__);
ret = s2m_rtc_set_time(info->dev, pdata->init_time);
} else
dev_info(info->dev, "%s: RTC initialize is not operated: This causes a weekday problem\n", __func__);
return ret;
}
static int s2m_rtc_probe(struct platform_device *pdev)
{
struct s2mpu13_dev *iodev = dev_get_drvdata(pdev->dev.parent);
struct s2mpu13_platform_data *pdata = dev_get_platdata(iodev->dev);
struct s2m_rtc_info *info;
int irq_base;
int ret = 0;
pr_info("[PMIC] %s: start\n", __func__);
info = devm_kzalloc(&pdev->dev, sizeof(struct s2m_rtc_info),
GFP_KERNEL);
if (!info)
return -ENOMEM;
irq_base = pdata->irq_base;
if (!irq_base) {
dev_err(&pdev->dev, "Failed to get irq base %d\n", irq_base);
return -ENODEV;
}
mutex_init(&info->lock);
info->dev = &pdev->dev;
info->iodev = iodev;
info->i2c = iodev->rtc;
info->pmic_i2c = iodev->pmic;
info->alarm_check = true;
info->use_alarm_workaround = false;
switch (info->iodev->device_type) {
case S2MPU13X:
info->irq = irq_base + S2MPU13_PMIC_IRQ_RTCA0_INT2;
#if IS_ENABLED(CONFIG_RTC_BOOT_ALARM) || IS_ENABLED(CONFIG_RTC_AUTO_PWRON)
info->boot_alarm_irq = irq_base + S2MPU13_PMIC_IRQ_RTCA1_INT2;
#endif
break;
default:
/* If this happens the core funtion has a problem */
BUG();
}
platform_set_drvdata(pdev, info);
ret = s2m_rtc_init_reg(info, pdata);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to initialize RTC reg:%d\n", ret);
goto err_rtc_init_reg;
}
/* enable wtsrm smpl */
if (pdata->wtsr_smpl)
s2m_rtc_enable_wtsr_smpl(info, pdata);
s2m_rtc_optimize_osc(info, pdata);
ret = device_init_wakeup(&pdev->dev, true);
if (ret < 0) {
pr_err("%s: device_init_wakeup fail(%d)\n", __func__, ret);
goto err_init_wakeup;
}
rtc_ws = wakeup_source_register(&pdev->dev, "rtc-s2mp");
ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
s2m_rtc_alarm_irq, 0, "rtc-alarm0", info);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
info->irq, ret);
goto err_rtc_irq;
}
disable_irq(info->irq);
disable_irq(info->irq);
#if IS_ENABLED(CONFIG_RTC_BOOT_ALARM) || IS_ENABLED(CONFIG_RTC_AUTO_PWRON)
ret = exynos_pmu_read(POWER_SYSIP_INFORM3, &is_charging_mode);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to get charge mode: %d\n", ret);
goto err_rtc_irq;
}
ret = s2m_rtc_set_restart_wqueue(info);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to set workqueue: %d\n", ret);
goto err_rtc_irq;
}
ret = devm_request_threaded_irq(&pdev->dev, info->boot_alarm_irq, NULL,
s2m_rtc_boot_alarm_irq, 0, "rtc-alarm1", info);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to request alarm1 IRQ: %d: %d\n", info->boot_alarm_irq, ret);
goto err_rtc_irq;
}
#endif
info->use_irq = true;
info->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
if (IS_ERR(info->rtc_dev)) {
dev_err(&pdev->dev, "Failed to allocate rtc devices\n");
goto err_rtc_dev_register;
}
info->rtc_dev->ops = &s2m_rtc_ops;
#if IS_ENABLED(CONFIG_RTC_BOOT_ALARM)
ret = rtc_add_group(info->rtc_dev, &s2mpu13_rtc_sysfs_files);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to creat sysfs: %d\n", ret);
goto err_rtc_dev_register;
}
#endif
ret = __rtc_register_device(THIS_MODULE, info->rtc_dev);
if (ret) {
dev_err(&pdev->dev, "Failed to creat register rtc devices: %d\n", ret);
goto err_rtc_dev_register;
}
if (pdata->smpl_warn_en) {
if (!gpio_is_valid(pdata->smpl_warn)) {
dev_err(&pdev->dev, "smpl_warn GPIO NOT VALID\n");
goto err_smpl_warn_pin;
}
INIT_DELAYED_WORK(&info->irq_work, exynos_smpl_warn_work);
info->smpl_irq = gpio_to_irq(pdata->smpl_warn);
irq_set_status_flags(info->smpl_irq, IRQ_DISABLE_UNLAZY);
ret = devm_request_threaded_irq(&pdev->dev, info->smpl_irq,
s2m_smpl_warn_irq_handler,
NULL,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
"SMPL WARN", info);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to request smpl warn IRQ: %d: %d\n",
info->smpl_irq, ret);
goto err_smpl_warn_irq;
}
info->smpl_warn_info = pdata->smpl_warn;
}
enable_irq(info->irq);
/* Set secure debug */
static_info = info;
ret = secure_debug_set_config(RTC_REG_SECURE1, RTC_BOOTING);
if (ret < 0) {
pr_err("%s: secure_debug_set_config failed\n", __func__);
goto err_smpl_warn_irq;
}
pr_info("[PMIC] %s: end\n", __func__);
return 0;
err_smpl_warn_irq:
destroy_delayed_work_on_stack(&info->irq_work);
err_smpl_warn_pin:
err_rtc_dev_register:
devm_free_irq(&pdev->dev, info->irq, info);
#if IS_ENABLED(CONFIG_RTC_BOOT_ALARM) || IS_ENABLED(CONFIG_RTC_AUTO_PWRON)
devm_free_irq(&pdev->dev, info->boot_alarm_irq, info);
#endif
enable_irq(info->irq);
enable_irq(info->irq);
err_rtc_irq:
wakeup_source_unregister(rtc_ws);
err_init_wakeup:
err_rtc_init_reg:
platform_set_drvdata(pdev, NULL);
mutex_destroy(&info->lock);
return ret;
}
static int s2m_rtc_remove(struct platform_device *pdev)
{
struct s2m_rtc_info *info = platform_get_drvdata(pdev);
if (!info->alarm_enabled)
enable_irq(info->irq);
if (info->dev->power.wakeup)
device_init_wakeup(&pdev->dev, false);
mutex_destroy(&info->lock);
#if IS_ENABLED(CONFIG_RTC_BOOT_ALARM) || IS_ENABLED(CONFIG_RTC_AUTO_PWRON)
devm_free_irq(&pdev->dev, info->boot_alarm_irq, info);
cancel_delayed_work_sync(&info->restart_work);
destroy_workqueue(info->restart_wqueue);
#endif
wakeup_source_unregister(rtc_ws);
return 0;
}
static void s2m_rtc_shutdown(struct platform_device *pdev)
{
/*disable wtsr, smpl */
struct s2m_rtc_info *info = platform_get_drvdata(pdev);
struct s2mpu13_platform_data *pdata = dev_get_platdata(info->iodev->dev);
if (info->wtsr_en || info->smpl_en)
s2m_rtc_disable_wtsr_smpl(info, pdata);
#if IS_ENABLED(CONFIG_RTC_BOOT_ALARM) || IS_ENABLED(CONFIG_RTC_AUTO_PWRON)
s2m_rtc_stop_boot_alarm0(info);
#endif
/* Set secure debug */
if (secure_debug_set_config(RTC_REG_SECURE1, RTC_SHUTDOWN) < 0)
pr_err("%s: secure_debug_set_config failed\n", __func__);
}
static const struct platform_device_id s2m_rtc_id[] = {
{ "s2mpu13-rtc", 0 },
{},
};
static int s2mpu13_rtc_suspend(struct device *dev)
{
struct s2m_rtc_info *info = dev_get_drvdata(dev);
struct rtc_time tm;
int ret;
ret = s2m_rtc_read_time(dev, &tm);
if (ret < 0)
dev_err(info->dev, "%s: fail to read rtc time\n",
__func__);
/* Set secure debug */
if (secure_debug_set_config(RTC_REG_SECURE1, RTC_SUSPEND) < 0)
pr_err("%s: secure_debug_set_config failed\n", __func__);
return 0;
}
static int s2mpu13_rtc_resume(struct device *dev)
{
struct s2m_rtc_info *info = dev_get_drvdata(dev);
struct rtc_time tm;
int ret;
ret = s2m_rtc_read_time(dev, &tm);
if (ret < 0)
dev_err(info->dev, "%s: fail to read rtc time\n",
__func__);
/* Set secure debug */
if (secure_debug_set_config(RTC_REG_SECURE1, RTC_RESUME) < 0)
pr_err("%s: secure_debug_set_config failed\n", __func__);
return 0;
}
static const struct dev_pm_ops s2mpu13_rtc_pm = {
.suspend = s2mpu13_rtc_suspend,
.resume = s2mpu13_rtc_resume,
};
static struct platform_driver s2m_rtc_driver = {
.driver = {
.name = "s2mpu13-rtc",
.owner = THIS_MODULE,
.pm = &s2mpu13_rtc_pm,
},
.probe = s2m_rtc_probe,
.remove = s2m_rtc_remove,
.shutdown = s2m_rtc_shutdown,
.id_table = s2m_rtc_id,
};
module_platform_driver(s2m_rtc_driver);
#if IS_ENABLED(CONFIG_RTC_AUTO_PWRON)
MODULE_SOFTDEP("pre: sec_pon_alarm");
#endif
/* Module information */
MODULE_DESCRIPTION("Samsung RTC driver");
MODULE_AUTHOR("Samsung Electronics");
MODULE_LICENSE("GPL");