kernel_samsung_a53x/drivers/bluetooth/btpower.c
2024-06-15 16:02:09 -03:00

1576 lines
40 KiB
C
Executable file

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
*/
/*
* Bluetooth Power Switch Module
* controls power to external Bluetooth device
* with interface to power management device
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/rfkill.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <linux/clk.h>
#include <linux/uaccess.h>
#include <linux/btpower.h>
#include <linux/of_device.h>
#include <soc/qcom/cmd-db.h>
#if defined CONFIG_BT_SLIM_QCA6390 || \
defined CONFIG_BT_SLIM_QCA6490 || \
defined CONFIG_BTFM_SLIM_WCN3990
#include "btfm_slim.h"
#endif
#include <linux/fs.h>
//headers for supporting LPM/OOB
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/serial_core.h>
#include <linux/pm_wakeup.h>
#include <linux/serial_s3c.h>
#include <soc/samsung/exynos-cpupm.h>
#include <linux/workqueue.h>
#define BT_UPORT 1 //refer BCM define
#define BT_LPM_ENABLE
//#define ACTIVE_LOW_WAKE_HOST_GPIO
#define STATUS_IDLE 1
#define STATUS_BUSY 0
int idle_ip_index;
#ifdef BT_LPM_ENABLE
#define BT_LPM_WORKQUEUE //enable when workqueue used for bt wake gpios assigned on SS PMIC
extern s3c_wake_peer_t s3c2410_serial_wake_peer[CONFIG_SERIAL_SAMSUNG_UARTS];
static int bt_wake_state = -1;
struct _bt_lpm {
int host_wake;
int dev_wake;
struct hrtimer enter_lpm_timer;
ktime_t enter_lpm_delay;
struct uart_port *uport;
struct wakeup_source *host_ws;
struct wakeup_source *bt_ws;
/*
struct wake_lock host_wake_lock;
struct wake_lock bt_wake_lock;
*/
} bt_lpm_q;
#endif // BT_LPM_ENABLE
#define PWR_SRC_NOT_AVAILABLE -2
#define DEFAULT_INVALID_VALUE -1
#define PWR_SRC_INIT_STATE_IDX 0
#define BTPOWER_MBOX_MSG_MAX_LEN 64
#define BTPOWER_MBOX_TIMEOUT_MS 1000
#define XO_CLK_RETRY_COUNT_MAX 5
/**
* enum btpower_vreg_param: Voltage regulator TCS param
* @BTPOWER_VREG_VOLTAGE: Provides voltage level to be configured in TCS
* @BTPOWER_VREG_MODE: Regulator mode
* @BTPOWER_VREG_TCS_ENABLE: Set Voltage regulator enable config in TCS
*/
enum btpower_vreg_param {
BTPOWER_VREG_VOLTAGE,
BTPOWER_VREG_MODE,
BTPOWER_VREG_ENABLE,
};
/**
* enum btpower_tcs_seq: TCS sequence ID for trigger
* BTPOWER_TCS_UP_SEQ: TCS Sequence based on up trigger / Wake TCS
* BTPOWER_TCS_DOWN_SEQ: TCS Sequence based on down trigger / Sleep TCS
* BTPOWER_TCS_ALL_SEQ: Update for both up and down triggers
*/
enum btpower_tcs_seq {
BTPOWER_TCS_UP_SEQ,
BTPOWER_TCS_DOWN_SEQ,
BTPOWER_TCS_ALL_SEQ,
};
enum power_src_pos {
BT_RESET_GPIO = PWR_SRC_INIT_STATE_IDX,
BT_SW_CTRL_GPIO,
BT_VDD_AON_LDO,
BT_VDD_DIG_LDO,
BT_VDD_RFA1_LDO,
BT_VDD_RFA2_LDO,
BT_VDD_ASD_LDO,
BT_VDD_XTAL_LDO,
BT_VDD_PA_LDO,
BT_VDD_CORE_LDO,
BT_VDD_IO_LDO,
BT_VDD_LDO,
BT_VDD_RFA_0p8,
BT_VDD_RFACMN,
// these indexes GPIOs/regs value are fetched during crash.
BT_RESET_GPIO_CURRENT,
BT_SW_CTRL_GPIO_CURRENT,
BT_VDD_AON_LDO_CURRENT,
BT_VDD_DIG_LDO_CURRENT,
BT_VDD_RFA1_LDO_CURRENT,
BT_VDD_RFA2_LDO_CURRENT,
BT_VDD_ASD_LDO_CURRENT,
BT_VDD_XTAL_LDO_CURRENT,
BT_VDD_PA_LDO_CURRENT,
BT_VDD_CORE_LDO_CURRENT,
BT_VDD_IO_LDO_CURRENT,
BT_VDD_LDO_CURRENT,
BT_VDD_RFA_0p8_CURRENT,
BT_VDD_RFACMN_CURRENT
};
#ifdef BT_LPM_WORKQUEUE
bool workqueue_enable;
/* work function */
static void set_bt_wake_high_work(struct work_struct *work);
static void set_bt_wake_low_work(struct work_struct *work);
/* work queue */
DECLARE_DELAYED_WORK(set_bt_wake_high_workqueue, set_bt_wake_high_work);
DECLARE_DELAYED_WORK(set_bt_wake_low_workqueue, set_bt_wake_low_work);
/* Macros for handling sleep work */
#define set_bt_wake_high() schedule_delayed_work(&set_bt_wake_high_workqueue, 0)
#define set_bt_wake_low() schedule_delayed_work(&set_bt_wake_low_workqueue, 0)
#endif
// Regulator structure for QCA6390 and QCA6490 BT SoC series
static struct bt_power_vreg_data bt_vregs_info_qca6x9x[] = {
{NULL, "qcom,bt-vdd-io", 1800000, 1800000, 0, false, true,
{BT_VDD_IO_LDO, BT_VDD_IO_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-aon", 966000, 966000, 0, false, true,
{BT_VDD_AON_LDO, BT_VDD_AON_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-rfacmn", 950000, 950000, 0, false, true,
{BT_VDD_RFACMN, BT_VDD_RFACMN_CURRENT}},
/* BT_CX_MX */
{NULL, "qcom,bt-vdd-dig", 966000, 966000, 0, false, true,
{BT_VDD_DIG_LDO, BT_VDD_DIG_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-rfa-0p8", 950000, 952000, 0, false, true,
{BT_VDD_RFA_0p8, BT_VDD_RFA_0p8_CURRENT}},
{NULL, "qcom,bt-vdd-rfa1", 1900000, 1900000, 0, false, true,
{BT_VDD_RFA1_LDO, BT_VDD_RFA1_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-rfa2", 1900000, 1900000, 0, false, true,
{BT_VDD_RFA2_LDO, BT_VDD_RFA2_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-asd", 2800000, 2800000, 0, false, true,
{BT_VDD_ASD_LDO, BT_VDD_ASD_LDO_CURRENT}},
};
// Regulator structure for WCN399x BT SoC series
static struct bt_power bt_vreg_info_wcn399x = {
.compatible = "qcom,wcn3990",
.vregs = (struct bt_power_vreg_data []) {
{NULL, "qcom,bt-vdd-io", 1700000, 1900000, 0, false, false,
{BT_VDD_IO_LDO, BT_VDD_IO_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-core", 1304000, 1304000, 0, false, false,
{BT_VDD_CORE_LDO, BT_VDD_CORE_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-pa", 3000000, 3312000, 0, false, false,
{BT_VDD_PA_LDO, BT_VDD_PA_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-xtal", 1700000, 1900000, 0, false, false,
{BT_VDD_XTAL_LDO, BT_VDD_XTAL_LDO_CURRENT}},
},
.num_vregs = 4,
};
static struct bt_power bt_vreg_info_qca6390 = {
.compatible = "qcom,qca6390",
.vregs = bt_vregs_info_qca6x9x,
.num_vregs = ARRAY_SIZE(bt_vregs_info_qca6x9x),
};
static struct bt_power bt_vreg_info_qca6490 = {
.compatible = "qcom,qca6490",
.vregs = bt_vregs_info_qca6x9x,
.num_vregs = ARRAY_SIZE(bt_vregs_info_qca6x9x),
};
static const struct of_device_id bt_power_match_table[] = {
{ .compatible = "qcom,qca6174" },
{ .compatible = "qcom,wcn3990", .data = &bt_vreg_info_wcn399x},
{ .compatible = "qcom,qca6390", .data = &bt_vreg_info_qca6390},
{ .compatible = "qcom,qca6490", .data = &bt_vreg_info_qca6490},
{},
};
static int bt_power_vreg_set(enum bt_power_modes mode);
//static int btpower_enable_ipa_vreg(struct btpower_platform_data *pdata);
static int bt_power_src_status[BT_POWER_SRC_SIZE];
static struct btpower_platform_data *bt_power_pdata;
static bool previous;
static int pwr_state;
static struct class *bt_class;
static int bt_major;
static int soc_id;
#if 0
static int bt_vreg_enable(struct bt_power_vreg_data *vreg)
{
int rc = 0;
pr_debug("%s: vreg_en for : %s\n", __func__, vreg->name);
if (!vreg->is_enabled) {
if ((vreg->min_vol != 0) && (vreg->max_vol != 0)) {
rc = regulator_set_voltage(vreg->reg,
vreg->min_vol,
vreg->max_vol);
if (rc < 0) {
pr_err("%s: regulator_set_voltage(%s) failed rc=%d\n",
__func__, vreg->name, rc);
goto out;
}
}
if (vreg->load_curr >= 0) {
rc = regulator_set_load(vreg->reg,
vreg->load_curr);
if (rc < 0) {
pr_err("%s: regulator_set_load(%s) failed rc=%d\n",
__func__, vreg->name, rc);
goto out;
}
}
rc = regulator_enable(vreg->reg);
if (rc < 0) {
pr_err("regulator_enable(%s) failed. rc=%d\n",
__func__, vreg->name, rc);
goto out;
}
vreg->is_enabled = true;
}
out:
return rc;
}
static int bt_vreg_enable_retention(struct bt_power_vreg_data *vreg)
{
int rc = 0;
if (!vreg)
return rc;
pr_debug("%s: enable_retention for : %s\n", __func__, vreg->name);
if ((vreg->is_enabled) && (vreg->is_retention_supp)) {
if ((vreg->min_vol != 0) && (vreg->max_vol != 0)) {
/* Set the min voltage to 0 */
rc = regulator_set_voltage(vreg->reg, 0, vreg->max_vol);
if (rc < 0) {
pr_err("%s: regulator_set_voltage(%s) failed rc=%d\n",
__func__, vreg->name, rc);
goto out;
}
}
if (vreg->load_curr >= 0) {
rc = regulator_set_load(vreg->reg, 0);
if (rc < 0) {
pr_err("%s: regulator_set_load(%s) failed rc=%d\n",
__func__, vreg->name, rc);
}
}
}
out:
return rc;
}
static int bt_vreg_disable(struct bt_power_vreg_data *vreg)
{
int rc = 0;
if (!vreg)
return rc;
pr_debug("%s for : %s\n", __func__, vreg->name);
if (vreg->is_enabled) {
rc = regulator_disable(vreg->reg);
if (rc < 0) {
pr_err("%s, regulator_disable(%s) failed. rc=%d\n",
__func__, vreg->name, rc);
goto out;
}
vreg->is_enabled = false;
if ((vreg->min_vol != 0) && (vreg->max_vol != 0)) {
/* Set the min voltage to 0 */
rc = regulator_set_voltage(vreg->reg, 0,
vreg->max_vol);
if (rc < 0) {
pr_err("%s: regulator_set_voltage(%s) failed rc=%d\n",
__func__, vreg->name, rc);
goto out;
}
}
if (vreg->load_curr >= 0) {
rc = regulator_set_load(vreg->reg, 0);
if (rc < 0) {
pr_err("%s: regulator_set_load(%s) failed rc=%d\n",
__func__, vreg->name, rc);
}
}
}
out:
return rc;
}
#endif
static int bt_clk_enable(struct bt_power_clk_data *clk)
{
int rc = 0;
pr_info("%s: %s\n", __func__, clk->name);
/* Get the clock handle for vreg */
if (!clk->clk || clk->is_enabled) {
pr_err("%s: error - node: %p, clk->is_enabled:%d\n",
__func__, clk->clk, clk->is_enabled);
return -EINVAL;
}
rc = clk_prepare_enable(clk->clk);
if (rc) {
pr_err("%s: failed to enable %s, rc(%d)\n",
__func__, clk->name, rc);
return rc;
}
clk->is_enabled = true;
return rc;
}
static int bt_clk_disable(struct bt_power_clk_data *clk)
{
int rc = 0;
pr_debug("%s: %s\n", __func__, clk->name);
/* Get the clock handle for vreg */
if (!clk->clk || !clk->is_enabled) {
pr_err("%s: error - node: %p, clk->is_enabled:%d\n",
__func__, clk->clk, clk->is_enabled);
return -EINVAL;
}
clk_disable_unprepare(clk->clk);
clk->is_enabled = false;
return rc;
}
static void btpower_set_xo_clk_gpio_state(bool enable)
{
int xo_clk_gpio = bt_power_pdata->xo_gpio_clk;
int retry = 0;
int rc = 0;
if (xo_clk_gpio < 0)
return;
retry_gpio_req:
rc = gpio_request(xo_clk_gpio, "bt_xo_clk_gpio");
if (rc) {
if (retry++ < XO_CLK_RETRY_COUNT_MAX) {
/* wait for ~(10 - 20) ms */
usleep_range(10000, 20000);
goto retry_gpio_req;
}
}
if (rc) {
pr_err("%s: unable to request XO clk gpio %d (%d)\n",
__func__, xo_clk_gpio, rc);
return;
}
if (enable) {
gpio_direction_output(xo_clk_gpio, 1);
/*XO CLK must be asserted for some time before BT_EN */
usleep_range(100, 200);
} else {
/* Assert XO CLK ~(2-5)ms before off for valid latch in HW */
usleep_range(4000, 6000);
gpio_direction_output(xo_clk_gpio, 0);
}
pr_info("%s:gpio(%d) success\n", __func__, xo_clk_gpio);
gpio_free(xo_clk_gpio);
}
static int bt_configure_gpios(int on)
{
int rc = 0;
int bt_reset_gpio = bt_power_pdata->bt_gpio_sys_rst;
int wl_reset_gpio = bt_power_pdata->wl_gpio_sys_rst;
int bt_sw_ctrl_gpio = bt_power_pdata->bt_gpio_sw_ctrl;
int bt_debug_gpio = bt_power_pdata->bt_gpio_debug;
int assert_dbg_gpio = 0;
if (on) {
rc = gpio_request(bt_reset_gpio, "bt_sys_rst_n");
if (rc) {
pr_err("%s: unable to request gpio %d (%d)\n",
__func__, bt_reset_gpio, rc);
//return rc;
}
rc = gpio_direction_output(bt_reset_gpio, 0);
if (rc) {
pr_err("%s: Unable to set direction\n", __func__);
return rc;
}
bt_power_src_status[BT_RESET_GPIO] =
gpio_get_value(bt_reset_gpio);
msleep(50);
pr_info("BTON:Turn Bt Off bt-reset-gpio(%d) value(%d)\n",
bt_reset_gpio, gpio_get_value(bt_reset_gpio));
if (bt_sw_ctrl_gpio >= 0) {
pr_info("BTON:Turn Bt Off\n");
bt_power_src_status[BT_SW_CTRL_GPIO] =
gpio_get_value(bt_sw_ctrl_gpio);
pr_info("bt-sw-ctrl-gpio(%d) value(%d)\n",
bt_sw_ctrl_gpio,
bt_power_src_status[BT_SW_CTRL_GPIO]);
}
if (wl_reset_gpio >= 0)
pr_info("BTON:Turn Bt On wl-reset-gpio(%d) value(%d)\n",
wl_reset_gpio, gpio_get_value(wl_reset_gpio));
if ((wl_reset_gpio < 0) ||
((wl_reset_gpio >= 0) && gpio_get_value(wl_reset_gpio))) {
btpower_set_xo_clk_gpio_state(true);
pr_info("%s: BTON: Asserting BT_EN\n", __func__);
rc = gpio_direction_output(bt_reset_gpio, 1);
if (rc) {
pr_err("%s: Unable to set direction\n", __func__);
return rc;
}
bt_power_src_status[BT_RESET_GPIO] =
gpio_get_value(bt_reset_gpio);
btpower_set_xo_clk_gpio_state(false);
}
if ((wl_reset_gpio >= 0) && (gpio_get_value(wl_reset_gpio) == 0)) {
if (gpio_get_value(bt_reset_gpio)) {
pr_info("%s: Wlan Off and BT On too close\n", __func__);
pr_info("%s: reset BT_EN, enable it after delay\n", __func__);
rc = gpio_direction_output(bt_reset_gpio, 0);
if (rc) {
pr_err("%s: Unable to set direction\n", __func__);
return rc;
}
bt_power_src_status[BT_RESET_GPIO] =
gpio_get_value(bt_reset_gpio);
}
pr_info("%s:add 100ms delay for AON output to fully discharge\n",
__func__);
msleep(100);
btpower_set_xo_clk_gpio_state(true);
rc = gpio_direction_output(bt_reset_gpio, 1);
if (rc) {
pr_err("%s: Unable to set direction\n", __func__);
return rc;
}
bt_power_src_status[BT_RESET_GPIO] =
gpio_get_value(bt_reset_gpio);
btpower_set_xo_clk_gpio_state(false);
}
msleep(50);
/* Check if SW_CTRL is asserted */
if (bt_sw_ctrl_gpio >= 0) {
rc = gpio_direction_input(bt_sw_ctrl_gpio);
if (rc) {
pr_err("%s:SWCTRL Dir Set Problem:%d\n",
__func__, rc);
} else if (!gpio_get_value(bt_sw_ctrl_gpio)) {
/* SW_CTRL not asserted, assert debug GPIO */
if (bt_debug_gpio >= 0)
assert_dbg_gpio = 1;
}
}
if (assert_dbg_gpio) {
rc = gpio_request(bt_debug_gpio, "bt_debug_n");
if (rc) {
pr_err("unable to request Debug Gpio\n");
} else {
rc = gpio_direction_output(bt_debug_gpio, 1);
if (rc)
pr_err("%s:Prob Set Debug-Gpio\n",
__func__);
}
}
pr_info("BTON:Turn Bt On bt-reset-gpio(%d) value(%d)\n",
bt_reset_gpio, gpio_get_value(bt_reset_gpio));
if (bt_sw_ctrl_gpio >= 0) {
pr_info("BTON:Turn Bt On\n");
bt_power_src_status[BT_SW_CTRL_GPIO] =
gpio_get_value(bt_sw_ctrl_gpio);
pr_info("bt-sw-ctrl-gpio(%d) value(%d)\n",
bt_sw_ctrl_gpio,
bt_power_src_status[BT_SW_CTRL_GPIO]);
}
} else {
gpio_set_value(bt_reset_gpio, 0);
msleep(100);
pr_info("BT-OFF:bt-reset-gpio(%d) value(%d)\n",
bt_reset_gpio, gpio_get_value(bt_reset_gpio));
if (bt_sw_ctrl_gpio >= 0) {
pr_info("BT-OFF:bt-sw-ctrl-gpio(%d) value(%d)\n",
bt_sw_ctrl_gpio,
gpio_get_value(bt_sw_ctrl_gpio));
}
}
pr_info("%s: bt_gpio= %d on: %d\n", __func__, bt_reset_gpio, on);
return rc;
}
static int bluetooth_power(int on)
{
int rc = 0;
pr_debug("%s: on: %d\n", __func__, on);
if (on == 1) {
rc = bt_power_vreg_set(BT_POWER_ENABLE);
if (rc < 0) {
pr_err("%s: bt_power regulators config failed\n",
__func__);
goto regulator_fail;
}
/* Parse dt_info and check if a target requires clock voting.
* Enable BT clock when BT is on and disable it when BT is off
*/
if (bt_power_pdata->bt_chip_clk) {
rc = bt_clk_enable(bt_power_pdata->bt_chip_clk);
if (rc < 0) {
pr_err("%s: bt_power gpio config failed\n",
__func__);
goto clk_fail;
}
}
if (bt_power_pdata->bt_gpio_sys_rst > 0) {
bt_power_src_status[BT_RESET_GPIO] =
DEFAULT_INVALID_VALUE;
bt_power_src_status[BT_SW_CTRL_GPIO] =
DEFAULT_INVALID_VALUE;
rc = bt_configure_gpios(on);
if (rc < 0) {
pr_err("%s: bt_power gpio config failed\n",
__func__);
goto gpio_fail;
}
}
#ifdef BT_LPM_ENABLE
if ( irq_set_irq_wake(bt_power_pdata->irq, 1)) {
pr_err("[BT] Set_irq_wake failed.\n");
goto gpio_fail;
}
#endif // BT_LPM_ENABLE
} else if (on == 0) {
#ifdef BT_LPM_ENABLE
if (irq_set_irq_wake(bt_power_pdata->irq, 0)) {
pr_err("[BT] Release_irq_wake failed.\n");
goto gpio_fail;
}
#endif //BT_LPM_ENABLE
// Power Off
if (bt_power_pdata->bt_gpio_sys_rst > 0)
bt_configure_gpios(on);
gpio_fail:
if (bt_power_pdata->bt_gpio_sys_rst > 0)
gpio_free(bt_power_pdata->bt_gpio_sys_rst);
if (bt_power_pdata->bt_gpio_debug > 0)
gpio_free(bt_power_pdata->bt_gpio_debug);
if (bt_power_pdata->bt_chip_clk)
bt_clk_disable(bt_power_pdata->bt_chip_clk);
clk_fail:
regulator_fail:
bt_power_vreg_set(BT_POWER_DISABLE);
#ifdef BT_LPM_ENABLE
pr_err("[BT] bluetooth_power will be off. release host wakelock in 1s\n");
//wake_lock_timeout(&bt_lpm_q.host_wake_lock, HZ/2);
__pm_wakeup_event(bt_lpm_q.host_ws, HZ/2);
#endif //BT_LPM_ENABLE
} else if (on == 2) {
/* Retention mode */
bt_power_vreg_set(BT_POWER_RETENTION);
} else {
pr_err("%s: Invalid power mode: %d\n", __func__, on);
rc = -1;
}
return rc;
}
static int btpower_toggle_radio(void *data, bool blocked)
{
int ret = 0;
int (*power_control)(int enable);
power_control =
((struct btpower_platform_data *)data)->bt_power_setup;
if (previous != blocked)
ret = (*power_control)(!blocked);
if (!ret)
previous = blocked;
return ret;
}
static const struct rfkill_ops btpower_rfkill_ops = {
.set_block = btpower_toggle_radio,
};
static ssize_t extldo_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return scnprintf(buf, 6, "false\n");
}
static DEVICE_ATTR_RO(extldo);
static int btpower_rfkill_probe(struct platform_device *pdev)
{
struct rfkill *rfkill;
int ret;
rfkill = rfkill_alloc("bt_power", &pdev->dev, RFKILL_TYPE_BLUETOOTH,
&btpower_rfkill_ops,
pdev->dev.platform_data);
if (!rfkill) {
dev_err(&pdev->dev, "rfkill allocate failed\n");
return -ENOMEM;
}
/* add file into rfkill0 to handle LDO27 */
ret = device_create_file(&pdev->dev, &dev_attr_extldo);
if (ret < 0)
pr_err("%s: device create file error\n", __func__);
/* force Bluetooth off during init to allow for user control */
rfkill_init_sw_state(rfkill, 1);
previous = true;
ret = rfkill_register(rfkill);
if (ret) {
dev_err(&pdev->dev, "rfkill register failed=%d\n", ret);
rfkill_destroy(rfkill);
return ret;
}
platform_set_drvdata(pdev, rfkill);
return 0;
}
static void btpower_rfkill_remove(struct platform_device *pdev)
{
struct rfkill *rfkill;
pr_debug("%s\n", __func__);
rfkill = platform_get_drvdata(pdev);
if (rfkill)
rfkill_unregister(rfkill);
rfkill_destroy(rfkill);
platform_set_drvdata(pdev, NULL);
}
#define MAX_PROP_SIZE 32
static int bt_dt_parse_vreg_info(struct device *dev,
struct bt_power_vreg_data *vreg_data)
{
int len, ret = 0;
const __be32 *prop;
char prop_name[MAX_PROP_SIZE];
struct bt_power_vreg_data *vreg = vreg_data;
struct device_node *np = dev->of_node;
const char *vreg_name = vreg_data->name;
pr_debug("%s: vreg dev tree parse for %s\n", __func__, vreg_name);
snprintf(prop_name, sizeof(prop_name), "%s-supply", vreg_name);
if (of_parse_phandle(np, prop_name, 0)) {
vreg->reg = regulator_get(dev, vreg_name);
if (IS_ERR(vreg->reg)) {
ret = PTR_ERR(vreg->reg);
vreg->reg = NULL;
pr_warn("%s: failed to get: %s error:%d\n", __func__,
vreg_name, ret);
return ret;
}
snprintf(prop_name, sizeof(prop_name), "%s-config", vreg->name);
prop = of_get_property(dev->of_node, prop_name, &len);
if (!prop || len != (4 * sizeof(__be32))) {
pr_debug("%s: Property %s %s, use default\n",
__func__, prop_name,
prop ? "invalid format" : "doesn't exist");
} else {
vreg->min_vol = be32_to_cpup(&prop[0]);
vreg->max_vol = be32_to_cpup(&prop[1]);
vreg->load_curr = be32_to_cpup(&prop[2]);
vreg->is_retention_supp = be32_to_cpup(&prop[3]);
}
pr_debug("%s: Got regulator: %s, min_vol: %u, max_vol: %u, load_curr: %u,is_retention_supp: %u\n",
__func__, vreg->name, vreg->min_vol, vreg->max_vol,
vreg->load_curr, vreg->is_retention_supp);
} else {
pr_info("%s: %s is not provided in device tree\n", __func__,
vreg_name);
}
return ret;
}
static int bt_dt_parse_clk_info(struct device *dev,
struct bt_power_clk_data **clk_data)
{
int ret = -EINVAL;
struct bt_power_clk_data *clk = NULL;
struct device_node *np = dev->of_node;
pr_debug("%s\n", __func__);
*clk_data = NULL;
if (of_parse_phandle(np, "clocks", 0)) {
clk = devm_kzalloc(dev, sizeof(*clk), GFP_KERNEL);
if (!clk) {
ret = -ENOMEM;
goto err;
}
/* Allocated 20 bytes size buffer for clock name string */
clk->name = devm_kzalloc(dev, 20, GFP_KERNEL);
/* Parse clock name from node */
ret = of_property_read_string_index(np, "clock-names", 0,
&(clk->name));
if (ret < 0) {
pr_err("%s: reading \"clock-names\" failed\n",
__func__);
return ret;
}
clk->clk = devm_clk_get(dev, clk->name);
if (IS_ERR(clk->clk)) {
ret = PTR_ERR(clk->clk);
pr_err("%s: failed to get %s, ret (%d)\n",
__func__, clk->name, ret);
clk->clk = NULL;
return ret;
}
*clk_data = clk;
} else {
pr_err("%s: clocks is not provided in device tree\n", __func__);
}
err:
return ret;
}
static int bt_power_vreg_get(struct platform_device *pdev)
{
int num_vregs, i = 0, ret = 0;
const struct bt_power *data;
struct regulator *bt_vdd;
data = of_device_get_match_data(&pdev->dev);
if (!data) {
pr_err("%s: failed to get dev node\n", __func__);
return -EINVAL;
}
memcpy(&bt_power_pdata->compatible, &data->compatible, MAX_PROP_SIZE);
bt_power_pdata->vreg_info = data->vregs;
num_vregs = bt_power_pdata->num_vregs = data->num_vregs;
for (; i < num_vregs; i++) {
ret = bt_dt_parse_vreg_info(&(pdev->dev),
&bt_power_pdata->vreg_info[i]);
/* No point to go further if failed to get regulator handler */
if (ret)
break;
}
#if 1 //SS-LSI Pamir
bt_vdd = regulator_get(&(pdev->dev), "vreg_wlan");
//bt_vdd = regulator_get(&(pdev->dev), "qcom,bt-vdd-pamir-supply");
if (IS_ERR(bt_vdd)) {
ret = PTR_ERR(bt_vdd);
pr_err("%s : get bt-vdd regulator failure %d\n", __func__, ret);
}
else
{
bt_power_pdata->bt_vdd = bt_vdd;
pr_err("%s : get bt-vdd regulator success \n", __func__);
}
#endif
return ret;
}
static int bt_power_vreg_set(enum bt_power_modes mode)
{
#if 1 //SS-LSI Pamir
int ret = 0;
#else
int num_vregs, i = 0, ret = 0;
int log_indx;
struct bt_power_vreg_data *vreg_info = NULL;
num_vregs = bt_power_pdata->num_vregs;
#endif
if (mode == BT_POWER_ENABLE) {
#if 1 //SS-LSI Pamir
ret = regulator_enable(bt_power_pdata->bt_vdd);
if (ret) {
pr_err("%s : Failed to enable bt_vdd %d\n", __func__, ret);
goto out;
}
else
pr_err("%s : ### enable bt_vdd\n", __func__);
#else
for (; i < num_vregs; i++) {
vreg_info = &bt_power_pdata->vreg_info[i];
log_indx = vreg_info->indx.init;
if (vreg_info->reg) {
bt_power_src_status[log_indx] =
DEFAULT_INVALID_VALUE;
ret = bt_vreg_enable(vreg_info);
if (ret < 0)
goto out;
if (vreg_info->is_enabled) {
bt_power_src_status[log_indx] =
regulator_get_voltage(
vreg_info->reg);
}
}
}
#endif
} else if (mode == BT_POWER_DISABLE) {
#if 1 //SS-LSI Pamir
ret = regulator_disable(bt_power_pdata->bt_vdd);
pr_err("%s : ### disable bt_vdd %d\n", __func__ , ret);
#else
for (; i < num_vregs; i++) {
vreg_info = &bt_power_pdata->vreg_info[i];
ret = bt_vreg_disable(vreg_info);
}
#endif
} else if (mode == BT_POWER_RETENTION) {
#if 0 //SS-LSI Pamir
for (; i < num_vregs; i++) {
vreg_info = &bt_power_pdata->vreg_info[i];
ret = bt_vreg_enable_retention(vreg_info);
}
#endif
} else {
pr_err("%s: Invalid power mode: %d\n", __func__, mode);
ret = -1;
}
out:
return ret;
}
static void bt_power_vreg_put(void)
{
int i = 0;
struct bt_power_vreg_data *vreg_info = NULL;
int num_vregs = bt_power_pdata->num_vregs;
for (; i < num_vregs; i++) {
vreg_info = &bt_power_pdata->vreg_info[i];
if (vreg_info->reg)
regulator_put(vreg_info->reg);
}
}
static int bt_power_populate_dt_pinfo(struct platform_device *pdev)
{
int rc;
pr_debug("%s\n", __func__);
if (!bt_power_pdata)
return -ENOMEM;
if (pdev->dev.of_node) {
rc = bt_power_vreg_get(pdev);
if (rc)
return rc;
#if 0 //SS-LSI Pamir
bt_power_pdata->bt_gpio_sys_rst =
of_get_named_gpio(pdev->dev.of_node,
"qcom,bt-reset-gpio", 0);
if (bt_power_pdata->bt_gpio_sys_rst < 0)
pr_warn("bt-reset-gpio not provided in devicetree\n");
bt_power_pdata->wl_gpio_sys_rst =
of_get_named_gpio(pdev->dev.of_node,
"qcom,wl-reset-gpio", 0);
if (bt_power_pdata->wl_gpio_sys_rst < 0)
pr_err("%s: wl-reset-gpio not provided in device tree\n",
__func__);
#else
bt_power_pdata->bt_gpio_sys_rst = of_get_gpio(pdev->dev.of_node, 0);
if (bt_power_pdata->bt_gpio_sys_rst < 0) {
pr_err("bt-reset-gpio not provided in device tree");
return bt_power_pdata->bt_gpio_sys_rst;
}
if ((rc = gpio_request(bt_power_pdata->bt_gpio_sys_rst, "bten_gpio")) < 0) {
pr_err("bt-reset-gpio request failed.\n");
return rc;
}
bt_power_pdata->bt_gpio_bt_wake = of_get_gpio(pdev->dev.of_node, 1);
if (bt_power_pdata->bt_gpio_bt_wake < 0) {
pr_err("bt-wake-gpio not provided in device tree");
return bt_power_pdata->bt_gpio_bt_wake;
}
if ((rc = gpio_request(bt_power_pdata->bt_gpio_bt_wake, "btwake_gpio")) < 0) {
pr_err("bt-wake-gpio request failed.\n");
return rc;
}
bt_power_pdata->bt_gpio_host_wake = of_get_gpio(pdev->dev.of_node, 2);
if (bt_power_pdata->bt_gpio_host_wake < 0) {
pr_err("bt-hostwake-gpio not provided in device tree");
return bt_power_pdata->bt_gpio_host_wake;
}
if ((rc = gpio_request(bt_power_pdata->bt_gpio_host_wake, "bthostwake_gpio")) < 0) {
pr_err("host-wake-gpio request failed.\n");
return rc;
}
gpio_direction_input(bt_power_pdata->bt_gpio_host_wake);
gpio_direction_output(bt_power_pdata->bt_gpio_bt_wake, 0);
gpio_direction_output(bt_power_pdata->bt_gpio_sys_rst, 0);
#endif
bt_power_pdata->bt_gpio_sw_ctrl =
of_get_named_gpio(pdev->dev.of_node,
"qcom,bt-sw-ctrl-gpio", 0);
if (bt_power_pdata->bt_gpio_sw_ctrl < 0)
pr_warn("bt-sw-ctrl-gpio not provided in devicetree\n");
bt_power_pdata->bt_gpio_debug =
of_get_named_gpio(pdev->dev.of_node,
"qcom,bt-debug-gpio", 0);
if (bt_power_pdata->bt_gpio_debug < 0)
pr_warn("bt-debug-gpio not provided in devicetree\n");
bt_power_pdata->xo_gpio_clk =
of_get_named_gpio(pdev->dev.of_node,
"qcom,xo-clk-gpio", 0);
if (bt_power_pdata->xo_gpio_clk < 0)
pr_warn("xo-clk-gpio not provided in devicetree\n");
rc = bt_dt_parse_clk_info(&pdev->dev,
&bt_power_pdata->bt_chip_clk);
if (rc < 0)
pr_warn("%s: clock not provided in device tree\n",
__func__);
}
bt_power_pdata->bt_power_setup = bluetooth_power;
return 0;
}
#ifdef BT_LPM_ENABLE
#ifdef BT_LPM_WORKQUEUE
static void set_bt_wake_high_work(struct work_struct *work)
{
//pr_err("[BT] workqueue - set_bt_wake_high_work");
gpio_set_value(bt_power_pdata->bt_gpio_bt_wake, 1);
}
static void set_bt_wake_low_work(struct work_struct *work)
{
//pr_err("[BT] workqueue - set_bt_wake_low_work");
gpio_set_value(bt_power_pdata->bt_gpio_bt_wake, 0);
}
#endif
static void set_wake_locked(int wake)
{
if (wake) {
//wake_lock(&bt_lpm_q.bt_wake_lock);
__pm_stay_awake(bt_lpm_q.bt_ws);
}
//gpio_set_value(bt_power_pdata->bt_gpio_bt_wake, wake);
#ifdef BT_LPM_WORKQUEUE
if(workqueue_enable)
{
if (wake)
set_bt_wake_high();
else
set_bt_wake_low();
}
else
#endif
{
gpio_set_value(bt_power_pdata->bt_gpio_bt_wake, wake);
}
bt_lpm_q.dev_wake = wake;
if (bt_wake_state != wake)
{
pr_err("[BT] set_wake_locked value = %d\n", wake);
bt_wake_state = wake;
}
}
static enum hrtimer_restart enter_lpm(struct hrtimer *timer)
{
if (bt_lpm_q.uport != NULL)
set_wake_locked(0);
if (bt_lpm_q.host_wake == 0)
exynos_update_ip_idle_status(idle_ip_index, STATUS_IDLE);
//wake_lock_timeout(&bt_lpm_q.bt_wake_lock, HZ/2);
__pm_wakeup_event(bt_lpm_q.bt_ws, HZ/2);
pr_err("LPM Timer Expred\n");
return HRTIMER_NORESTART;
}
void qcomm_bt_lpm_exit_lpm_locked(struct uart_port *uport)
{
bt_lpm_q.uport = uport;
hrtimer_try_to_cancel(&bt_lpm_q.enter_lpm_timer);
exynos_update_ip_idle_status(idle_ip_index, STATUS_BUSY);
set_wake_locked(1);
pr_err("host has data to send\n");
hrtimer_start(&bt_lpm_q.enter_lpm_timer, bt_lpm_q.enter_lpm_delay,
HRTIMER_MODE_REL);
}
static void update_host_wake_locked(int host_wake)
{
if (host_wake == bt_lpm_q.host_wake) {
pr_err("No Change in Host LPM State\n");
return;
}
pr_err("soc has data to send - %d\n", host_wake);
bt_lpm_q.host_wake = host_wake;
if (host_wake) {
exynos_update_ip_idle_status(idle_ip_index, STATUS_BUSY);
__pm_stay_awake(bt_lpm_q.host_ws);
//wake_lock(&bt_lpm_q.host_wake_lock);
} else {
/* Take a timed wakelock, so that upper layers can take it.
* The chipset deasserts the hostwake lock, when there is no
* more data to send.
*/
pr_err("[BT] update_host_wake_locked host_wake is deasserted. release wakelock in 1s\n");
__pm_wakeup_event(bt_lpm_q.host_ws, HZ/2);
//wake_lock_timeout(&bt_lpm_q.host_wake_lock, HZ/2);
if (bt_lpm_q.dev_wake == 0)
exynos_update_ip_idle_status(idle_ip_index, STATUS_IDLE);
}
}
static irqreturn_t host_wake_isr(int irq, void *dev)
{
int host_wake;
host_wake = gpio_get_value(bt_power_pdata->bt_gpio_host_wake);
irq_set_irq_type(irq, host_wake ? IRQF_TRIGGER_FALLING : IRQF_TRIGGER_RISING);
#ifdef ACTIVE_LOW_WAKE_HOST_GPIO
host_wake = host_wake ? 0 : 1;
#endif
if (!bt_lpm_q.uport) {
bt_lpm_q.host_wake = host_wake;
pr_err("[BT] host_wake_isr uport is null\n");
return IRQ_HANDLED;
}
update_host_wake_locked(host_wake);
return IRQ_HANDLED;
}
static int qcomm_bt_lpm_init(struct platform_device *pdev)
{
int ret;
pr_err("BT LPM Initialization\n");
#ifdef BT_LPM_WORKQUEUE
workqueue_enable = of_property_read_bool(pdev->dev.of_node, "samsung,bt-wake-lock-workqueue");
#endif
hrtimer_init(&bt_lpm_q.enter_lpm_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL);
bt_lpm_q.enter_lpm_delay = ktime_set(1, 0); /* 1 sec */ /*1->3*//*3->4*/
bt_lpm_q.enter_lpm_timer.function = enter_lpm;
bt_lpm_q.host_wake = 0;
/*
wake_lock_init(&bt_lpm_q.host_wake_lock, WAKE_LOCK_SUSPEND,
"BT_host_wake");
wake_lock_init(&bt_lpm_q.bt_wake_lock, WAKE_LOCK_SUSPEND,
"BT_bt_wake");
*/
bt_lpm_q.host_ws = wakeup_source_register(&pdev->dev, "BT_host_wake");
bt_lpm_q.bt_ws = wakeup_source_register(&pdev->dev, "BT_bt_wake");
s3c2410_serial_wake_peer[BT_UPORT] = (s3c_wake_peer_t) qcomm_bt_lpm_exit_lpm_locked;
bt_power_pdata->irq = gpio_to_irq(bt_power_pdata->bt_gpio_host_wake);
#ifdef ACTIVE_LOW_WAKE_HOST_GPIO
ret = request_irq(bt_power_pdata->irq, host_wake_isr, IRQF_TRIGGER_FALLING, "bt_host_wake", NULL);
#else
ret = request_irq(bt_power_pdata->irq, host_wake_isr, IRQF_TRIGGER_RISING, "bt_host_wake", NULL);
#endif
if (ret) {
pr_err("[BT] Request_host wake irq failed.\n");
return ret;
}
return 0;
}
#endif
static int bt_power_probe(struct platform_device *pdev)
{
int ret = 0;
int itr;
pr_debug("%s\n", __func__);
/* Fill whole array with -2 i.e NOT_AVAILABLE state by default
* for any GPIO or Reg handle.
*/
for (itr = PWR_SRC_INIT_STATE_IDX;
itr < BT_POWER_SRC_SIZE; ++itr)
bt_power_src_status[itr] = PWR_SRC_NOT_AVAILABLE;
bt_power_pdata = kzalloc(sizeof(*bt_power_pdata), GFP_KERNEL);
if (!bt_power_pdata)
return -ENOMEM;
bt_power_pdata->pdev = pdev;
if (pdev->dev.of_node) {
ret = bt_power_populate_dt_pinfo(pdev);
if (ret < 0) {
pr_err("%s, Failed to populate device tree info\n",
__func__);
goto free_pdata;
}
pdev->dev.platform_data = bt_power_pdata;
} else if (pdev->dev.platform_data) {
/* Optional data set to default if not provided */
if (!((struct btpower_platform_data *)
(pdev->dev.platform_data))->bt_power_setup)
((struct btpower_platform_data *)
(pdev->dev.platform_data))->bt_power_setup =
bluetooth_power;
memcpy(bt_power_pdata, pdev->dev.platform_data,
sizeof(struct btpower_platform_data));
pwr_state = 0;
} else {
pr_err("%s: Failed to get platform data\n", __func__);
goto free_pdata;
}
if (btpower_rfkill_probe(pdev) < 0)
goto free_pdata;
//btpower_aop_mbox_init(bt_power_pdata);
#ifdef BT_LPM_ENABLE
qcomm_bt_lpm_init(pdev);
#endif
idle_ip_index = exynos_get_idle_ip_index("bluetooth",1);
exynos_update_ip_idle_status(idle_ip_index, STATUS_IDLE);
return 0;
free_pdata:
kfree(bt_power_pdata);
return ret;
}
static int bt_power_remove(struct platform_device *pdev)
{
dev_dbg(&pdev->dev, "%s\n", __func__);
btpower_rfkill_remove(pdev);
bt_power_vreg_put();
kfree(bt_power_pdata);
#ifdef BT_LPM_ENABLE
//wake_lock_destroy(&bt_lpm_q.host_wake_lock);
//wake_lock_destroy(&bt_lpm_q.bt_wake_lock);
wakeup_source_unregister(bt_lpm_q.host_ws);
wakeup_source_unregister(bt_lpm_q.bt_ws);
#endif
return 0;
}
int btpower_register_slimdev(struct device *dev)
{
pr_debug("%s\n", __func__);
if (!bt_power_pdata || (dev == NULL)) {
pr_err("%s: Failed to allocate memory\n", __func__);
return -EINVAL;
}
bt_power_pdata->slim_dev = dev;
return 0;
}
EXPORT_SYMBOL(btpower_register_slimdev);
int btpower_get_chipset_version(void)
{
pr_debug("%s\n", __func__);
return soc_id;
}
EXPORT_SYMBOL(btpower_get_chipset_version);
static void set_pwr_srcs_status(struct bt_power_vreg_data *handle)
{
int ldo_index;
if (handle) {
ldo_index = handle->indx.crash;
bt_power_src_status[ldo_index] =
DEFAULT_INVALID_VALUE;
if (handle->is_enabled &&
(regulator_is_enabled(handle->reg))) {
bt_power_src_status[ldo_index] =
(int)regulator_get_voltage(handle->reg);
pr_err("%s(%d) value(%d)\n", handle->name,
handle, bt_power_src_status[ldo_index]);
} else {
pr_err("%s:%s is_enabled: %d\n",
__func__, handle->name,
handle->is_enabled);
}
}
}
static void set_gpios_srcs_status(char *gpio_name,
int gpio_index, int handle)
{
if (handle >= 0) {
bt_power_src_status[gpio_index] =
DEFAULT_INVALID_VALUE;
bt_power_src_status[gpio_index] =
gpio_get_value(handle);
pr_err("%s(%d) value(%d)\n", gpio_name,
handle, bt_power_src_status[gpio_index]);
} else {
pr_err("%s: %s not configured\n",
__func__, gpio_name);
}
}
static long bt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
int ret = 0, pwr_cntrl = 0;
int chipset_version = 0;
int itr, num_vregs;
struct bt_power_vreg_data *vreg_info = NULL;
switch (cmd) {
case BT_CMD_SLIM_TEST:
#if (defined CONFIG_BT_SLIM_QCA6390 || \
defined CONFIG_BT_SLIM_QCA6490 || \
defined CONFIG_BTFM_SLIM_WCN3990)
if (!bt_power_pdata->slim_dev) {
pr_err("%s: slim_dev is null\n", __func__);
return -EINVAL;
}
ret = btfm_slim_hw_init(
bt_power_pdata->slim_dev->platform_data
);
#endif
break;
case BT_CMD_PWR_CTRL:
pwr_cntrl = (int)arg;
pr_warn("%s: BT_CMD_PWR_CTRL pwr_cntrl: %d\n",
__func__, pwr_cntrl);
if (pwr_state != pwr_cntrl) {
ret = bluetooth_power(pwr_cntrl);
if (!ret)
pwr_state = pwr_cntrl;
} else {
pr_err("%s: BT chip state is already: %d no change\n",
__func__, pwr_state);
ret = 0;
}
break;
case BT_CMD_CHIPSET_VERS:
chipset_version = (int)arg;
pr_warn("%s: unified Current SOC Version : %x\n", __func__,
chipset_version);
if (chipset_version) {
soc_id = chipset_version;
} else {
pr_err("%s: got invalid soc version\n", __func__);
soc_id = 0;
}
break;
case BT_CMD_GET_CHIPSET_ID:
if (copy_to_user((void __user *)arg, bt_power_pdata->compatible,
MAX_PROP_SIZE)) {
pr_err("%s: copy to user failed\n", __func__);
ret = -EFAULT;
}
break;
case BT_CMD_CHECK_SW_CTRL:
/* Check if SW_CTRL is asserted */
pr_info("BT_CMD_CHECK_SW_CTRL\n");
if (bt_power_pdata->bt_gpio_sw_ctrl > 0) {
bt_power_src_status[BT_SW_CTRL_GPIO] =
DEFAULT_INVALID_VALUE;
ret = gpio_direction_input(
bt_power_pdata->bt_gpio_sw_ctrl);
if (ret) {
pr_err("%s:gpio_direction_input api\n",
__func__);
pr_err("%s:failed for SW_CTRL:%d\n",
__func__, ret);
} else {
bt_power_src_status[BT_SW_CTRL_GPIO] =
gpio_get_value(
bt_power_pdata->bt_gpio_sw_ctrl);
pr_info("bt-sw-ctrl-gpio(%d) value(%d)\n",
bt_power_pdata->bt_gpio_sw_ctrl,
bt_power_src_status[BT_SW_CTRL_GPIO]);
}
} else {
pr_err("bt_gpio_sw_ctrl not configured\n");
return -EINVAL;
}
break;
case BT_CMD_GETVAL_POWER_SRCS:
pr_err("BT_CMD_GETVAL_POWER_SRCS\n");
set_gpios_srcs_status("BT_RESET_GPIO", BT_RESET_GPIO_CURRENT,
bt_power_pdata->bt_gpio_sys_rst);
set_gpios_srcs_status("SW_CTRL_GPIO", BT_SW_CTRL_GPIO_CURRENT,
bt_power_pdata->bt_gpio_sw_ctrl);
num_vregs = bt_power_pdata->num_vregs;
for (itr = 0; itr < num_vregs; itr++) {
vreg_info = &bt_power_pdata->vreg_info[itr];
set_pwr_srcs_status(vreg_info);
}
if (copy_to_user((void __user *)arg,
bt_power_src_status, sizeof(bt_power_src_status))) {
pr_err("%s: copy to user failed\n", __func__);
ret = -EFAULT;
}
break;
#if 0 // SS-LSI
case BT_CMD_SET_IPA_TCS_INFO:
pr_err("%s: BT_CMD_SET_IPA_TCS_INFO\n", __func__);
btpower_enable_ipa_vreg(bt_power_pdata);
break;
#endif
default:
return -ENOIOCTLCMD;
}
return ret;
}
static struct platform_driver bt_power_driver = {
.probe = bt_power_probe,
.remove = bt_power_remove,
.driver = {
.name = "bt_power",
.of_match_table = bt_power_match_table,
},
};
static const struct file_operations bt_dev_fops = {
.unlocked_ioctl = bt_ioctl,
.compat_ioctl = bt_ioctl,
};
static int __init btpower_init(void)
{
int ret = 0;
ret = platform_driver_register(&bt_power_driver);
if (ret) {
pr_err("%s: platform_driver_register error: %d\n",
__func__, ret);
goto driver_err;
}
bt_major = register_chrdev(0, "bt", &bt_dev_fops);
if (bt_major < 0) {
pr_err("%s: failed to allocate char dev\n", __func__);
ret = -1;
goto chrdev_err;
}
bt_class = class_create(THIS_MODULE, "bt-dev");
if (IS_ERR(bt_class)) {
pr_err("%s: coudn't create class\n", __func__);
ret = -1;
goto class_err;
}
if (device_create(bt_class, NULL, MKDEV(bt_major, 0),
NULL, "btpower") == NULL) {
pr_err("%s: failed to allocate char dev\n", __func__);
goto device_err;
}
return 0;
device_err:
class_destroy(bt_class);
class_err:
unregister_chrdev(bt_major, "bt");
chrdev_err:
platform_driver_unregister(&bt_power_driver);
driver_err:
return ret;
}
#if 0 // SS-LSI
int btpower_aop_mbox_init(struct btpower_platform_data *pdata)
{
struct mbox_client *mbox = &pdata->mbox_client_data;
struct mbox_chan *chan;
int ret = 0;
mbox->dev = &pdata->pdev->dev;
mbox->tx_block = true;
mbox->tx_tout = BTPOWER_MBOX_TIMEOUT_MS;
mbox->knows_txdone = false;
pdata->mbox_chan = NULL;
chan = mbox_request_channel(mbox, 0);
if (IS_ERR(chan)) {
pr_err("%s: failed to get mbox channel\n", __func__);
return PTR_ERR(chan);
}
pdata->mbox_chan = chan;
ret = of_property_read_string(pdata->pdev->dev.of_node,
"qcom,vreg_ipa",
&pdata->vreg_ipa);
if (ret)
pr_info("%s: vreg for iPA not configured\n", __func__);
else
pr_info("%s: Mbox channel initialized\n", __func__);
return 0;
}
static int btpower_aop_set_vreg_param(struct btpower_platform_data *pdata,
const char *vreg_name,
enum btpower_vreg_param param,
enum btpower_tcs_seq seq, int val)
{
struct qmp_pkt pkt;
char mbox_msg[BTPOWER_MBOX_MSG_MAX_LEN];
static const char * const vreg_param_str[] = {"v", "m", "e"};
static const char *const tcs_seq_str[] = {"upval", "dwnval", "enable"};
int ret = 0;
if (param > BTPOWER_VREG_ENABLE || seq > BTPOWER_TCS_ALL_SEQ || !vreg_name)
return -EINVAL;
snprintf(mbox_msg, BTPOWER_MBOX_MSG_MAX_LEN,
"{class: wlan_pdc, res: %s.%s, %s: %d}", vreg_name,
vreg_param_str[param], tcs_seq_str[seq], val);
pr_info("%s: sending AOP Mbox msg: %s\n", __func__, mbox_msg);
pkt.size = BTPOWER_MBOX_MSG_MAX_LEN;
pkt.data = mbox_msg;
ret = mbox_send_message(pdata->mbox_chan, &pkt);
if (ret < 0)
pr_err("%s:Failed to send AOP mbox msg(%s), err(%d)\n",
__func__, mbox_msg, ret);
return ret;
}
static int btpower_enable_ipa_vreg(struct btpower_platform_data *pdata)
{
int ret = 0;
static bool config_done;
if (config_done) {
pr_info("%s: IPA Vreg already configured\n", __func__);
return 0;
}
if (!pdata->vreg_ipa || !pdata->mbox_chan) {
pr_info("%s: mbox/iPA vreg not configured\n", __func__);
} else {
ret = btpower_aop_set_vreg_param(pdata,
pdata->vreg_ipa,
BTPOWER_VREG_ENABLE,
BTPOWER_TCS_UP_SEQ, 1);
if (ret >= 0) {
pr_info("%s:Enabled iPA\n", __func__);
config_done = true;
}
}
return ret;
}
#endif
static void __exit btpower_exit(void)
{
platform_driver_unregister(&bt_power_driver);
}
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MSM Bluetooth power control driver");
module_init(btpower_init);
module_exit(btpower_exit);