kernel_samsung_a53x/drivers/soc/samsung/exynos-pmu-if.c
2024-06-15 16:02:09 -03:00

338 lines
7.8 KiB
C
Executable file

/*
* Copyright (c) 2015 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* EXYNOS - CPU PMU(Power Management Unit) support
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/smp.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <soc/samsung/exynos-pmu-if.h>
#include <linux/slab.h>
/**
* "pmureg" has the mapped base address of PMU(Power Management Unit)
*/
static struct regmap *pmureg;
static void __iomem *pmu_alive;
static unsigned int *cpu_offset;
static spinlock_t update_lock;
/* Atomic operation for PMU_ALIVE registers. (offset 0~0x3FFF)
When the targer register can be accessed by multiple masters,
This functions should be used. */
static inline void exynos_pmu_set_bit_atomic(unsigned int offset, unsigned int val)
{
__raw_writel(val, pmu_alive + (offset | 0xc000));
}
static inline void exynos_pmu_clr_bit_atomic(unsigned int offset, unsigned int val)
{
__raw_writel(val, pmu_alive + (offset | 0x8000));
}
/**
* No driver refers the "pmureg" directly, through the only exported API.
*/
int exynos_pmu_read(unsigned int offset, unsigned int *val)
{
return regmap_read(pmureg, offset, val);
}
int exynos_pmu_write(unsigned int offset, unsigned int val)
{
return regmap_write(pmureg, offset, val);
}
int exynos_pmu_update(unsigned int offset, unsigned int mask, unsigned int val)
{
int i;
unsigned long flags;
if (offset > 0x3fff) {
return regmap_update_bits(pmureg, offset, mask, val);
} else {
spin_lock_irqsave(&update_lock, flags);
for (i = 0; i < 32; i++) {
if (mask & (1 << i)) {
if (val & (1 << i))
exynos_pmu_set_bit_atomic(offset, i);
else
exynos_pmu_clr_bit_atomic(offset, i);
}
}
spin_unlock_irqrestore(&update_lock, flags);
return 0;
}
}
struct regmap *exynos_get_pmuregmap(void)
{
return pmureg;
}
EXPORT_SYMBOL_GPL(exynos_get_pmuregmap);
EXPORT_SYMBOL(exynos_pmu_read);
EXPORT_SYMBOL(exynos_pmu_write);
EXPORT_SYMBOL(exynos_pmu_update);
#define PMU_CPU_CONFIG_BASE 0x1000
#define PMU_CPU_STATUS_BASE 0x1004
#define CPU_LOCAL_PWR_CFG 0x1
static int pmu_cpu_offset(unsigned int cpu)
{
return cpu_offset[cpu];
}
static void pmu_cpu_ctrl(unsigned int cpu, int enable)
{
unsigned int offset;
offset = pmu_cpu_offset(cpu);
regmap_update_bits(pmureg, PMU_CPU_CONFIG_BASE + offset,
CPU_LOCAL_PWR_CFG,
enable ? CPU_LOCAL_PWR_CFG : 0);
}
static int pmu_cpu_state(unsigned int cpu)
{
unsigned int offset, val = 0;
offset = pmu_cpu_offset(cpu);
regmap_read(pmureg, PMU_CPU_STATUS_BASE + offset, &val);
return ((val & CPU_LOCAL_PWR_CFG) == CPU_LOCAL_PWR_CFG);
}
#define CLUSTER_ADDR_OFFSET 0x8
#define PMU_NONCPU_CONFIG_BASE 0x2040
#define PMU_NONCPU_STATUS_BASE 0x2044
#define PMU_MEMORY_CLUSTER1_NONCPU_STATUS 0x2380
#define MEMORY_CLUSTER_ADDR_OFFSET 0x21C
#define NONCPU_LOCAL_PWR_CFG 0xF
#define SHARED_CACHE_LOCAL_PWR_CFG 0x1
static void pmu_cluster_ctrl(unsigned int cpu, int enable)
{
unsigned int offset;
offset = topology_physical_package_id(cpu) * CLUSTER_ADDR_OFFSET;
regmap_update_bits(pmureg,
PMU_NONCPU_CONFIG_BASE + offset,
NONCPU_LOCAL_PWR_CFG,
enable ? NONCPU_LOCAL_PWR_CFG : 0);
}
static bool pmu_noncpu_state(unsigned int cpu)
{
unsigned int noncpu_stat = 0;
unsigned int offset;
offset = topology_physical_package_id(cpu) * CLUSTER_ADDR_OFFSET;
regmap_read(pmureg,
PMU_NONCPU_STATUS_BASE + offset, &noncpu_stat);
return !!(noncpu_stat & NONCPU_LOCAL_PWR_CFG);
}
static int pmu_shared_cache_state(unsigned int cpu)
{
unsigned int shared_stat = 0;
unsigned int offset;
offset = topology_physical_package_id(cpu) * MEMORY_CLUSTER_ADDR_OFFSET;
regmap_read(pmureg,
PMU_MEMORY_CLUSTER1_NONCPU_STATUS + offset, &shared_stat);
return (shared_stat & SHARED_CACHE_LOCAL_PWR_CFG);
}
static void exynos_cpu_up(unsigned int cpu)
{
pmu_cpu_ctrl(cpu, 1);
}
static void exynos_cpu_down(unsigned int cpu)
{
pmu_cpu_ctrl(cpu, 0);
}
static int exynos_cpu_state(unsigned int cpu)
{
return pmu_cpu_state(cpu);
}
static void exynos_cluster_up(unsigned int cpu)
{
pmu_cluster_ctrl(cpu, false);
}
static void exynos_cluster_down(unsigned int cpu)
{
pmu_cluster_ctrl(cpu, true);
}
static int exynos_cluster_state(unsigned int cpu)
{
return pmu_shared_cache_state(cpu) &&
pmu_noncpu_state(cpu);
}
struct exynos_cpu_power_ops exynos_cpu = {
.power_up = exynos_cpu_up,
.power_down = exynos_cpu_down,
.power_state = exynos_cpu_state,
.cluster_up = exynos_cluster_up,
.cluster_down = exynos_cluster_down,
.cluster_state = exynos_cluster_state,
};
EXPORT_SYMBOL_GPL(exynos_cpu);
#ifdef CONFIG_CP_PMUCAL
#define PMU_CP_STAT 0x0038
int exynos_check_cp_status(void)
{
unsigned int val;
exynos_pmu_read(PMU_CP_STAT, &val);
return val;
}
#endif
#if 0 // Not used node.
static struct bus_type exynos_info_subsys = {
.name = "exynos_info",
.dev_name = "exynos_info",
};
#define NR_CPUS_PER_CLUSTER 4
static ssize_t core_status_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
ssize_t n = 0;
int cpu;
for_each_possible_cpu(cpu) {
/*
* Each cluster has four cores.
* "cpu % NR_CPUS_PER_CLUSTER == 0" means that
* the cpu is a first one of each cluster.
*/
if (!(cpu % NR_CPUS_PER_CLUSTER)) {
n += scnprintf(buf + n, 26, "%s shared_cache : %d\n",
(!cpu) ? "boot" : "nonboot",
pmu_shared_cache_state(cpu));
n += scnprintf(buf + n, 24, "%s Noncpu : %d\n",
(!cpu) ? "boot" : "nonboot",
pmu_noncpu_state(cpu));
}
n += scnprintf(buf + n, 24, "CPU%d : %d\n",
cpu, pmu_cpu_state(cpu));
}
return n;
}
static struct kobj_attribute cs_attr =
__ATTR(core_status, 0644, core_status_show, NULL);
static struct attribute *cs_sysfs_attrs[] = {
&cs_attr.attr,
NULL,
};
static struct attribute_group cs_sysfs_group = {
.attrs = cs_sysfs_attrs,
};
static const struct attribute_group *cs_sysfs_groups[] = {
&cs_sysfs_group,
NULL,
};
#endif
static int exynos_pmu_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct resource *res;
int ret;
pmureg = syscon_regmap_lookup_by_phandle(dev->of_node,
"samsung,syscon-phandle");
if (IS_ERR(pmureg)) {
pr_err("Fail to get regmap of PMU\n");
return PTR_ERR(pmureg);
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pmu_alive");
pmu_alive = devm_ioremap_resource(dev, res);
if (IS_ERR(pmu_alive)) {
pr_err("Failed to get address of PMU_ALIVE\n");
return PTR_ERR(pmu_alive);
}
spin_lock_init(&update_lock);
#if 0 // Not used node.
if (subsys_system_register(&exynos_info_subsys,
cs_sysfs_groups))
pr_err("Fail to register exynos_info subsys\n");
#endif
ret = of_property_count_u32_elems(dev->of_node, "cpu_offset");
if (!ret) {
pr_err("%s: unabled to get cpu_offset\n", __func__);
} else if (ret > 0) {
cpu_offset = kzalloc(sizeof(unsigned int) * ret, GFP_KERNEL);
of_property_read_u32_array(dev->of_node, "cpu_offset", cpu_offset, ret);
}
dev_info(dev, "exynos_pmu_if probe\n");
return 0;
}
static const struct of_device_id of_exynos_pmu_match[] = {
{ .compatible = "samsung,exynos-pmu", },
{ },
};
MODULE_DEVICE_TABLE(of, of_exynos_pmu_match);
static const struct platform_device_id exynos_pmu_ids[] = {
{ "exynos-pmu", },
{ }
};
static struct platform_driver exynos_pmu_if_driver = {
.driver = {
.name = "exynos-pmu-if",
.of_match_table = of_exynos_pmu_match,
},
.probe = exynos_pmu_probe,
.id_table = exynos_pmu_ids,
};
static int exynos_pmu_if_init(void)
{
return platform_driver_register(&exynos_pmu_if_driver);
}
postcore_initcall_sync(exynos_pmu_if_init);
static void exynos_pmu_if_exit(void)
{
return platform_driver_unregister(&exynos_pmu_if_driver);
}
module_exit(exynos_pmu_if_exit);
MODULE_LICENSE("GPL");