/* * Copyright (c) 2015 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * EXYNOS - CPU PMU(Power Management Unit) support * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include /** * "pmureg" has the mapped base address of PMU(Power Management Unit) */ static struct regmap *pmureg; static void __iomem *pmu_alive; static unsigned int *cpu_offset; static spinlock_t update_lock; /* Atomic operation for PMU_ALIVE registers. (offset 0~0x3FFF) When the targer register can be accessed by multiple masters, This functions should be used. */ static inline void exynos_pmu_set_bit_atomic(unsigned int offset, unsigned int val) { __raw_writel(val, pmu_alive + (offset | 0xc000)); } static inline void exynos_pmu_clr_bit_atomic(unsigned int offset, unsigned int val) { __raw_writel(val, pmu_alive + (offset | 0x8000)); } /** * No driver refers the "pmureg" directly, through the only exported API. */ int exynos_pmu_read(unsigned int offset, unsigned int *val) { return regmap_read(pmureg, offset, val); } int exynos_pmu_write(unsigned int offset, unsigned int val) { return regmap_write(pmureg, offset, val); } int exynos_pmu_update(unsigned int offset, unsigned int mask, unsigned int val) { int i; unsigned long flags; if (offset > 0x3fff) { return regmap_update_bits(pmureg, offset, mask, val); } else { spin_lock_irqsave(&update_lock, flags); for (i = 0; i < 32; i++) { if (mask & (1 << i)) { if (val & (1 << i)) exynos_pmu_set_bit_atomic(offset, i); else exynos_pmu_clr_bit_atomic(offset, i); } } spin_unlock_irqrestore(&update_lock, flags); return 0; } } struct regmap *exynos_get_pmuregmap(void) { return pmureg; } EXPORT_SYMBOL_GPL(exynos_get_pmuregmap); EXPORT_SYMBOL(exynos_pmu_read); EXPORT_SYMBOL(exynos_pmu_write); EXPORT_SYMBOL(exynos_pmu_update); #define PMU_CPU_CONFIG_BASE 0x1000 #define PMU_CPU_STATUS_BASE 0x1004 #define CPU_LOCAL_PWR_CFG 0x1 static int pmu_cpu_offset(unsigned int cpu) { return cpu_offset[cpu]; } static void pmu_cpu_ctrl(unsigned int cpu, int enable) { unsigned int offset; offset = pmu_cpu_offset(cpu); regmap_update_bits(pmureg, PMU_CPU_CONFIG_BASE + offset, CPU_LOCAL_PWR_CFG, enable ? CPU_LOCAL_PWR_CFG : 0); } static int pmu_cpu_state(unsigned int cpu) { unsigned int offset, val = 0; offset = pmu_cpu_offset(cpu); regmap_read(pmureg, PMU_CPU_STATUS_BASE + offset, &val); return ((val & CPU_LOCAL_PWR_CFG) == CPU_LOCAL_PWR_CFG); } #define CLUSTER_ADDR_OFFSET 0x8 #define PMU_NONCPU_CONFIG_BASE 0x2040 #define PMU_NONCPU_STATUS_BASE 0x2044 #define PMU_MEMORY_CLUSTER1_NONCPU_STATUS 0x2380 #define MEMORY_CLUSTER_ADDR_OFFSET 0x21C #define NONCPU_LOCAL_PWR_CFG 0xF #define SHARED_CACHE_LOCAL_PWR_CFG 0x1 static void pmu_cluster_ctrl(unsigned int cpu, int enable) { unsigned int offset; offset = topology_physical_package_id(cpu) * CLUSTER_ADDR_OFFSET; regmap_update_bits(pmureg, PMU_NONCPU_CONFIG_BASE + offset, NONCPU_LOCAL_PWR_CFG, enable ? NONCPU_LOCAL_PWR_CFG : 0); } static bool pmu_noncpu_state(unsigned int cpu) { unsigned int noncpu_stat = 0; unsigned int offset; offset = topology_physical_package_id(cpu) * CLUSTER_ADDR_OFFSET; regmap_read(pmureg, PMU_NONCPU_STATUS_BASE + offset, &noncpu_stat); return !!(noncpu_stat & NONCPU_LOCAL_PWR_CFG); } static int pmu_shared_cache_state(unsigned int cpu) { unsigned int shared_stat = 0; unsigned int offset; offset = topology_physical_package_id(cpu) * MEMORY_CLUSTER_ADDR_OFFSET; regmap_read(pmureg, PMU_MEMORY_CLUSTER1_NONCPU_STATUS + offset, &shared_stat); return (shared_stat & SHARED_CACHE_LOCAL_PWR_CFG); } static void exynos_cpu_up(unsigned int cpu) { pmu_cpu_ctrl(cpu, 1); } static void exynos_cpu_down(unsigned int cpu) { pmu_cpu_ctrl(cpu, 0); } static int exynos_cpu_state(unsigned int cpu) { return pmu_cpu_state(cpu); } static void exynos_cluster_up(unsigned int cpu) { pmu_cluster_ctrl(cpu, false); } static void exynos_cluster_down(unsigned int cpu) { pmu_cluster_ctrl(cpu, true); } static int exynos_cluster_state(unsigned int cpu) { return pmu_shared_cache_state(cpu) && pmu_noncpu_state(cpu); } struct exynos_cpu_power_ops exynos_cpu = { .power_up = exynos_cpu_up, .power_down = exynos_cpu_down, .power_state = exynos_cpu_state, .cluster_up = exynos_cluster_up, .cluster_down = exynos_cluster_down, .cluster_state = exynos_cluster_state, }; EXPORT_SYMBOL_GPL(exynos_cpu); #ifdef CONFIG_CP_PMUCAL #define PMU_CP_STAT 0x0038 int exynos_check_cp_status(void) { unsigned int val; exynos_pmu_read(PMU_CP_STAT, &val); return val; } #endif #if 0 // Not used node. static struct bus_type exynos_info_subsys = { .name = "exynos_info", .dev_name = "exynos_info", }; #define NR_CPUS_PER_CLUSTER 4 static ssize_t core_status_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { ssize_t n = 0; int cpu; for_each_possible_cpu(cpu) { /* * Each cluster has four cores. * "cpu % NR_CPUS_PER_CLUSTER == 0" means that * the cpu is a first one of each cluster. */ if (!(cpu % NR_CPUS_PER_CLUSTER)) { n += scnprintf(buf + n, 26, "%s shared_cache : %d\n", (!cpu) ? "boot" : "nonboot", pmu_shared_cache_state(cpu)); n += scnprintf(buf + n, 24, "%s Noncpu : %d\n", (!cpu) ? "boot" : "nonboot", pmu_noncpu_state(cpu)); } n += scnprintf(buf + n, 24, "CPU%d : %d\n", cpu, pmu_cpu_state(cpu)); } return n; } static struct kobj_attribute cs_attr = __ATTR(core_status, 0644, core_status_show, NULL); static struct attribute *cs_sysfs_attrs[] = { &cs_attr.attr, NULL, }; static struct attribute_group cs_sysfs_group = { .attrs = cs_sysfs_attrs, }; static const struct attribute_group *cs_sysfs_groups[] = { &cs_sysfs_group, NULL, }; #endif static int exynos_pmu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct resource *res; int ret; pmureg = syscon_regmap_lookup_by_phandle(dev->of_node, "samsung,syscon-phandle"); if (IS_ERR(pmureg)) { pr_err("Fail to get regmap of PMU\n"); return PTR_ERR(pmureg); } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pmu_alive"); pmu_alive = devm_ioremap_resource(dev, res); if (IS_ERR(pmu_alive)) { pr_err("Failed to get address of PMU_ALIVE\n"); return PTR_ERR(pmu_alive); } spin_lock_init(&update_lock); #if 0 // Not used node. if (subsys_system_register(&exynos_info_subsys, cs_sysfs_groups)) pr_err("Fail to register exynos_info subsys\n"); #endif ret = of_property_count_u32_elems(dev->of_node, "cpu_offset"); if (!ret) { pr_err("%s: unabled to get cpu_offset\n", __func__); } else if (ret > 0) { cpu_offset = kzalloc(sizeof(unsigned int) * ret, GFP_KERNEL); of_property_read_u32_array(dev->of_node, "cpu_offset", cpu_offset, ret); } dev_info(dev, "exynos_pmu_if probe\n"); return 0; } static const struct of_device_id of_exynos_pmu_match[] = { { .compatible = "samsung,exynos-pmu", }, { }, }; MODULE_DEVICE_TABLE(of, of_exynos_pmu_match); static const struct platform_device_id exynos_pmu_ids[] = { { "exynos-pmu", }, { } }; static struct platform_driver exynos_pmu_if_driver = { .driver = { .name = "exynos-pmu-if", .of_match_table = of_exynos_pmu_match, }, .probe = exynos_pmu_probe, .id_table = exynos_pmu_ids, }; static int exynos_pmu_if_init(void) { return platform_driver_register(&exynos_pmu_if_driver); } postcore_initcall_sync(exynos_pmu_if_init); static void exynos_pmu_if_exit(void) { return platform_driver_unregister(&exynos_pmu_if_driver); } module_exit(exynos_pmu_if_exit); MODULE_LICENSE("GPL");