/* * Copyright 2015, 2019-2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * */ #include #include #include #include #include "amdgpu.h" #include "amdgpu_trace.h" #include "sgpu_bpmd.h" #ifdef CONFIG_DRM_SGPU_EXYNOS #include "exynos_gpu_interface.h" #endif /* CONFIG_DRM_SGPU_EXYNOS */ static void amdgpu_job_timedout(struct drm_sched_job *s_job) { struct amdgpu_ring *ring = to_amdgpu_ring(s_job->sched); struct amdgpu_job *job = to_amdgpu_job(s_job); struct amdgpu_task_info ti; struct amdgpu_device *adev = ring->adev; int r = 0; if (adev->runpm) { r = pm_runtime_get_sync(adev->ddev.dev); if (r < 0) goto pm_put; vangogh_lite_ifpo_power_on(adev); } if (amdgpu_fault_detect) { if (test_bit(FAULT_DETECT_RUNNING, &adev->fault_detect_flags)) { set_bit(FAULT_DETECT_JOB_TIMEOUT, &adev->fault_detect_flags); set_bit(FAULT_DETECT_WAKEUP, &adev->fault_detect_flags); wake_up(&adev->fault_detect_wake_up); } } if (ring->funcs->check_ring_done && s_job->s_fence->parent) { struct dma_fence *fence = s_job->s_fence->parent; job = to_amdgpu_job(s_job); DRM_INFO("%s: vmid %u job_id %lld FENCE drm %lld/%lld/%lld sgpu %lld/%lld\n", ring->name, job->vmid, s_job->id, job->num_ibs, s_job->s_fence->scheduled.context, s_job->s_fence->finished.context, s_job->s_fence->finished.seqno, fence->context, fence->seqno); SGPU_LOG(adev, DMSG_INFO, DMSG_ETC, "%s: vmid %u job_id %lld FENCE drm %lld/%lld/%lld sgpu %lld/%lld\n", ring->name, job->vmid, s_job->id, job->num_ibs, s_job->s_fence->scheduled.context, s_job->s_fence->finished.context, s_job->s_fence->finished.seqno, fence->context, fence->seqno); ring->funcs->check_ring_done(ring); } if (ring->funcs->get_rreg(ring) == ring->funcs->get_rptr(ring)) goto out; if (sgpu_jobtimeout_to_panic) { #ifdef CONFIG_DRM_SGPU_BPMD if (ring->adev->bpmd.funcs != NULL) sgpu_bpmd_dump(ring->adev); #endif /* CONFIG_DRM_SGPU_BPMD */ list_add(&s_job->node, &s_job->sched->ring_mirror_list); panic("%s panic\n", __func__); } memset(&ti, 0, sizeof(struct amdgpu_task_info)); if (amdgpu_gpu_recovery && amdgpu_ring_soft_recovery(ring, job->vmid, s_job->s_fence->parent)) { DRM_ERROR("ring %s timeout, but soft recovered\n", s_job->sched->name); SGPU_LOG(adev, DMSG_INFO, DMSG_ETC, "ring %s timeout, but soft recovered\n", s_job->sched->name); goto out; } amdgpu_vm_get_task_info(ring->adev, job->pasid, &ti); DRM_ERROR("ring %s timeout, signaled seq=%u, emitted seq=%u\n", job->base.sched->name, atomic_read(&ring->fence_drv.last_seq), ring->fence_drv.sync_seq); DRM_ERROR("Process information: process %s pid %d thread %s pid %d\n", ti.process_name, ti.tgid, ti.task_name, ti.pid); SGPU_LOG(adev, DMSG_INFO, DMSG_ETC, "Process information: process %s pid %d thread %s pid %d\n", ti.process_name, ti.tgid, ti.task_name, ti.pid); if (amdgpu_device_should_recover_gpu(ring->adev)) { amdgpu_device_gpu_recover(ring->adev, job); } else { drm_sched_suspend_timeout(&ring->sched); if (amdgpu_sriov_vf(adev)) adev->virt.tdr_debug = true; } out: if (adev->runpm) { atomic_dec(&adev->in_ifpo); pm_runtime_mark_last_busy(adev->ddev.dev); } pm_put: if (adev->runpm) pm_runtime_put_autosuspend(adev->ddev.dev); } int amdgpu_job_alloc(struct amdgpu_device *adev, unsigned num_ibs, struct amdgpu_job **job, struct amdgpu_vm *vm) { size_t size = sizeof(struct amdgpu_job); if (num_ibs == 0) return -EINVAL; size += sizeof(struct amdgpu_ib) * num_ibs; *job = kzalloc(size, GFP_KERNEL); if (!*job) return -ENOMEM; /* * Initialize the scheduler to at least some ring so that we always * have a pointer to adev. */ (*job)->base.sched = &adev->rings[0]->sched; (*job)->vm = vm; (*job)->ibs = (void *)&(*job)[1]; (*job)->num_ibs = num_ibs; amdgpu_sync_create(&(*job)->sync); amdgpu_sync_create(&(*job)->sched_sync); (*job)->vram_lost_counter = atomic_read(&adev->vram_lost_counter); (*job)->vm_pd_addr = AMDGPU_BO_INVALID_OFFSET; (*job)->end_of_frame = false; return 0; } int amdgpu_job_alloc_with_ib(struct amdgpu_device *adev, unsigned size, enum amdgpu_ib_pool_type pool_type, struct amdgpu_job **job) { int r; r = amdgpu_job_alloc(adev, 1, job, NULL); if (r) return r; r = amdgpu_ib_get(adev, NULL, size, pool_type, &(*job)->ibs[0]); if (r) kfree(*job); return r; } static void amdgpu_job_wa_pc_rings(struct amdgpu_ctx *ctx, struct amdgpu_ib *ib) { if (ib->flags & AMDGPU_IB_FLAG_PERF_COUNTER) { if (ib->ip_type == AMDGPU_HW_IP_GFX) ctx->pc_gfx_rings |= (1 << ib->ring); else if (ib->ip_type == AMDGPU_HW_IP_COMPUTE) ctx->pc_compute_rings |= (1 << ib->ring); } else { if (ib->ip_type == AMDGPU_HW_IP_GFX) ctx->pc_gfx_rings &= ~(1 << ib->ring); else if (ib->ip_type == AMDGPU_HW_IP_COMPUTE) ctx->pc_compute_rings &= ~(1 << ib->ring); } } static void amdgpu_job_wa_sqtt_rings(struct amdgpu_ctx *ctx, struct amdgpu_ib *ib) { if (ib->flags & AMDGPU_IB_FLAG_SQ_THREAD_TRACE) { if (ib->ip_type == AMDGPU_HW_IP_GFX) ctx->sqtt_gfx_rings |= (1 << ib->ring); else if (ib->ip_type == AMDGPU_HW_IP_COMPUTE) ctx->sqtt_compute_rings |= (1 << ib->ring); } else { if (ib->ip_type == AMDGPU_HW_IP_GFX) ctx->sqtt_gfx_rings &= ~(1 << ib->ring); else if (ib->ip_type == AMDGPU_HW_IP_COMPUTE) ctx->sqtt_compute_rings &= ~(1 << ib->ring); } } static void amdgpu_job_track_pc_sqtt(struct amdgpu_device *adev, struct amdgpu_job *job) { struct amdgpu_ctx *ctx = job->ctx; struct amdgpu_ib *ib; bool old_rings, new_rings; int i; job->pc_wa_enable = job->pc_wa_disable = false; job->sqtt_wa_enable = job->sqtt_wa_disable = false; for (i = 0; i < job->num_ibs; i++) { ib = &job->ibs[i]; /* Are there any rings that have pc active */ old_rings = (ctx->pc_gfx_rings || ctx->pc_compute_rings); amdgpu_job_wa_pc_rings(ctx, ib); new_rings = (ctx->pc_gfx_rings || ctx->pc_compute_rings); /* If old and new is not equal, it means there is a change * in Perfcount active/inactive. */ if (old_rings != new_rings) { /* If new_rings is true, enable workaround for this job. * If new_rings is false, disable workaround after this job.*/ if (new_rings) { job->pc_wa_enable = true; job->pc_wa_disable = false; } else job->pc_wa_disable = true; } old_rings = (ctx->sqtt_gfx_rings || ctx->sqtt_compute_rings); amdgpu_job_wa_sqtt_rings(ctx, ib); new_rings = (ctx->sqtt_gfx_rings || ctx->sqtt_compute_rings); if (old_rings != new_rings) { if (new_rings) { job->sqtt_wa_enable = true; job->sqtt_wa_disable = false; } else job->sqtt_wa_disable = true; } } } static void amdgpu_job_pc_workaround_enable(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; /* if adev->pc_count is 0, workaround is disabled. * Enable the workaround. */ if (atomic_read(&adev->pc_count) == 0) amdgpu_gfx_sw_workaround(adev, WA_CG_PERFCOUNTER, 1); atomic_inc(&adev->pc_count); } static void amdgpu_job_pc_workaround_disable(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; if (atomic_read(&adev->pc_count) == 0) { DRM_ERROR("Tracking Perfcounter active/inactive out of bound\n"); return; } atomic_dec(&adev->pc_count); /* if adev->pc_count become 0, workaround is enabled. * Disable the workaround. */ if (atomic_read(&adev->pc_count) == 0) amdgpu_gfx_sw_workaround(adev, WA_CG_PERFCOUNTER, 0); } static void amdgpu_job_sqtt_workaround_enable(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; /* if adev->sqtt_count is 0, workaround is disabled. * Enable the workaround. */ if (atomic_read(&adev->sqtt_count) == 0) amdgpu_gfx_sw_workaround(adev, WA_CG_SQ_THREAD_TRACE, 1); atomic_inc(&adev->sqtt_count); } static void amdgpu_job_sqtt_workaround_disable(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; if (atomic_read(&adev->sqtt_count) == 0) { DRM_ERROR("Tracking SQTT active/inactive out of bound\n"); return; } atomic_dec(&adev->sqtt_count); /* if adev->sqtt_count become 0, workaround is enabled. * Disable the workaround. */ if (atomic_read(&adev->sqtt_count) == 0) amdgpu_gfx_sw_workaround(adev, WA_CG_SQ_THREAD_TRACE, 0); } void amdgpu_job_free_resources(struct amdgpu_job *job) { struct amdgpu_ring *ring = to_amdgpu_ring(job->base.sched); struct dma_fence *f; unsigned i; /* use sched fence if available */ f = job->base.s_fence ? &job->base.s_fence->finished : job->fence; for (i = 0; i < job->num_ibs; ++i) amdgpu_ib_free(ring->adev, &job->ibs[i], f); } static void amdgpu_job_free_cb(struct drm_sched_job *s_job) { struct amdgpu_ring *ring = to_amdgpu_ring(s_job->sched); struct amdgpu_device *adev = ring->adev; struct amdgpu_job *job = to_amdgpu_job(s_job); bool fault_detect_notify = false; ktime_t scheduled, finished; if (sgpu_unscheduled_job_debug) cancel_work_sync(&job->wait_on_scheduled_work); if (amdgpu_fault_detect) { if (ring->funcs->type == AMDGPU_RING_TYPE_GFX && (atomic_dec_return(&adev->gfx_job_cnt) == 0)) { clear_bit(FAULT_DETECT_GFX_ACTIVE, &adev->fault_detect_flags); fault_detect_notify = true; } else if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE && (atomic_dec_return(&adev->compute_job_cnt) == 0)) { clear_bit(FAULT_DETECT_COMPUTE_ACTIVE, &adev->fault_detect_flags); fault_detect_notify = true; } /* If both GFX and Compute are idle inform to fault detect */ if (fault_detect_notify && (!test_bit(FAULT_DETECT_GFX_ACTIVE, &adev->fault_detect_flags) && !test_bit(FAULT_DETECT_COMPUTE_ACTIVE, &adev->fault_detect_flags))) { set_bit(FAULT_DETECT_WAKEUP, &adev->fault_detect_flags); wake_up(&adev->fault_detect_wake_up); } } if (sgpu_amigo_user_time && ring->funcs->type == AMDGPU_RING_TYPE_GFX) { scheduled = s_job->s_fence->scheduled.timestamp; finished = s_job->s_fence->finished.timestamp; #ifdef CONFIG_DRM_SGPU_EXYNOS exynos_amigo_interframe_hw_update(scheduled, finished, job->end_of_frame); #endif /* CONFIG_DRM_SGPU_EXYNOS */ } drm_sched_job_cleanup(s_job); atomic_dec(&ring->num_jobs); dma_fence_put(job->fence); amdgpu_sync_free(&job->sync); amdgpu_sync_free(&job->sched_sync); /* Is workaround not needed after this job */ if (adev->asic_type == CHIP_VANGOGH_LITE) { mutex_lock(&adev->pc_sqtt_mutex); if (job->pc_wa_disable) amdgpu_job_pc_workaround_disable(ring); if (job->sqtt_wa_disable) amdgpu_job_sqtt_workaround_disable(ring); mutex_unlock(&adev->pc_sqtt_mutex); } kfree(job); SGPU_LOG(adev, DMSG_INFO, DMSG_ETC, "amdgpu_job_free_cb, active_jobs :%d", atomic_read(&adev->ifpo_active_jobs)); if (adev->runpm) { mutex_lock(&adev->ifpo_mutex); if (adev->ifpo_runtime_control && atomic_read(&adev->in_ifpo) == 0 && atomic_read(&adev->dev->power.usage_count) == 0 && atomic_read(&adev->ifpo_active_jobs) == 0) vangogh_lite_ifpo_power_off(adev); mutex_unlock(&adev->ifpo_mutex); } } void amdgpu_job_free(struct amdgpu_job *job) { amdgpu_job_free_resources(job); dma_fence_put(job->fence); amdgpu_sync_free(&job->sync); amdgpu_sync_free(&job->sched_sync); kfree(job); } int amdgpu_job_submit(struct amdgpu_job *job, struct drm_sched_entity *entity, void *owner, struct dma_fence **f) { enum drm_sched_priority priority; struct amdgpu_ring *ring; int r; if (!f) return -EINVAL; r = drm_sched_job_init(&job->base, entity, owner); if (r) return r; *f = dma_fence_get(&job->base.s_fence->finished); amdgpu_job_free_resources(job); drm_sched_entity_push_job(&job->base, entity); ring = to_amdgpu_ring(entity->rq->sched); priority = job->base.s_priority; atomic_inc(&ring->num_jobs); return 0; } int amdgpu_job_submit_direct(struct amdgpu_job *job, struct amdgpu_ring *ring, struct dma_fence **fence) { int r; job->base.sched = &ring->sched; r = amdgpu_ib_schedule(ring, job->num_ibs, job->ibs, NULL, fence); job->fence = dma_fence_get(*fence); if (r) return r; /* update ring fence seq by SW */ if (job->ifh_mode && (ring->funcs->type == AMDGPU_RING_TYPE_GFX || ring->funcs->type == AMDGPU_RING_TYPE_SDMA || ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)) amdgpu_fence_driver_force_completion(ring); amdgpu_job_free(job); return 0; } static struct dma_fence *amdgpu_job_dependency(struct drm_sched_job *sched_job, struct drm_sched_entity *s_entity) { struct amdgpu_ring *ring = to_amdgpu_ring(s_entity->rq->sched); struct amdgpu_job *job = to_amdgpu_job(sched_job); struct amdgpu_vm *vm = job->vm; struct dma_fence *fence; int r; fence = amdgpu_sync_get_fence(&job->sync); if (fence && drm_sched_dependency_optimized(fence, s_entity)) { r = amdgpu_sync_fence(&job->sched_sync, fence); if (r) DRM_ERROR("Error adding fence (%d)\n", r); } while (fence == NULL && vm && !job->vmid) { r = amdgpu_vmid_grab(vm, ring, &job->sync, &job->base.s_fence->finished, job); if (r) DRM_ERROR("Error getting VM ID (%d)\n", r); fence = amdgpu_sync_get_fence(&job->sync); } return fence; } static struct dma_fence *amdgpu_job_run(struct drm_sched_job *sched_job) { struct amdgpu_ring *ring = to_amdgpu_ring(sched_job->sched); struct amdgpu_device *adev = ring->adev; struct dma_fence *fence = NULL, *finished; struct amdgpu_job *job; int r = 0; if (adev->runpm) { r = pm_runtime_get_sync(adev->ddev.dev); if (r < 0) goto pm_put; r = 0; vangogh_lite_ifpo_power_on(adev); } atomic_dec(&adev->ifpo_active_jobs); job = to_amdgpu_job(sched_job); finished = &job->base.s_fence->finished; BUG_ON(amdgpu_sync_peek_fence(&job->sync, NULL)); trace_amdgpu_sched_run_job(job); /* Is workaround needed for this job */ if (adev->asic_type == CHIP_VANGOGH_LITE) { if (!amdgpu_in_reset(adev)) { mutex_lock(&adev->pc_sqtt_mutex); amdgpu_job_track_pc_sqtt(adev, job); if (job->pc_wa_enable) amdgpu_job_pc_workaround_enable(ring); if (job->sqtt_wa_enable) amdgpu_job_sqtt_workaround_enable(ring); mutex_unlock(&adev->pc_sqtt_mutex); } } if (job->vram_lost_counter != atomic_read(&ring->adev->vram_lost_counter)) dma_fence_set_error(finished, -ECANCELED);/* skip IB as well if VRAM lost */ if (finished->error < 0) { DRM_INFO("Skip scheduling IBs!\n"); dma_fence_signal(finished); } else if (job->vm->process_flags == PF_EXITING) { DRM_INFO("Skip scheduling IBs PF_EXITING!\n"); dma_fence_set_error(finished, -ENOEXEC); dma_fence_signal(finished); } else { r = amdgpu_ib_schedule(ring, job->num_ibs, job->ibs, job, &fence); if (r) { DRM_ERROR("Error scheduling IBs (%d)\n", r); } else { if (amdgpu_fault_detect) { if (ring->funcs->type == AMDGPU_RING_TYPE_GFX) { atomic_inc(&adev->gfx_job_cnt); set_bit( FAULT_DETECT_GFX_ACTIVE, &adev->fault_detect_flags); if (!test_bit(FAULT_DETECT_RUNNING, &adev->fault_detect_flags)) { set_bit( FAULT_DETECT_WAKEUP, &adev->fault_detect_flags ); wake_up( &adev->fault_detect_wake_up); } } else if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) { atomic_inc(&adev->compute_job_cnt); set_bit( FAULT_DETECT_COMPUTE_ACTIVE, &adev->fault_detect_flags); if (!test_bit(FAULT_DETECT_RUNNING, &adev->fault_detect_flags)) { set_bit( FAULT_DETECT_WAKEUP, &adev->fault_detect_flags); wake_up( &adev->fault_detect_wake_up); } } } } } /* if gpu reset, hw fence will be replaced here */ dma_fence_put(job->fence); job->fence = dma_fence_get(fence); amdgpu_job_free_resources(job); /* update ring fence seq by SW */ if (job->ifh_mode && (ring->funcs->type == AMDGPU_RING_TYPE_GFX || ring->funcs->type == AMDGPU_RING_TYPE_SDMA || ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)) amdgpu_fence_driver_force_completion(ring); fence = r ? ERR_PTR(r) : fence; pm_put: if (adev->runpm) { atomic_dec(&adev->in_ifpo); pm_runtime_put_autosuspend(adev->ddev.dev); } return fence; } #define to_drm_sched_job(sched_job) \ container_of((sched_job), struct drm_sched_job, queue_node) void amdgpu_job_stop_all_jobs_on_sched(struct drm_gpu_scheduler *sched) { struct drm_sched_job *s_job; struct drm_sched_entity *s_entity = NULL; int i; /* Signal all jobs not yet scheduled */ for (i = DRM_SCHED_PRIORITY_COUNT - 1; i >= DRM_SCHED_PRIORITY_MIN; i--) { struct drm_sched_rq *rq = &sched->sched_rq[i]; if (!rq) continue; spin_lock(&rq->lock); list_for_each_entry(s_entity, &rq->entities, list) { while ((s_job = to_drm_sched_job(spsc_queue_pop(&s_entity->job_queue)))) { struct drm_sched_fence *s_fence = s_job->s_fence; dma_fence_signal(&s_fence->scheduled); dma_fence_set_error(&s_fence->finished, -EHWPOISON); dma_fence_signal(&s_fence->finished); } } spin_unlock(&rq->lock); } /* Signal all jobs already scheduled to HW */ list_for_each_entry(s_job, &sched->ring_mirror_list, node) { struct drm_sched_fence *s_fence = s_job->s_fence; dma_fence_set_error(&s_fence->finished, -EHWPOISON); dma_fence_signal(&s_fence->finished); } } const struct drm_sched_backend_ops amdgpu_sched_ops = { .dependency = amdgpu_job_dependency, .run_job = amdgpu_job_run, .timedout_job = amdgpu_job_timedout, .free_job = amdgpu_job_free_cb };