/* * * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com) * Copyright (C) 2012 Amit Daniel * * Copyright (C) 2014 Viresh Kumar * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "exynos_tmu.h" #include "../thermal_core.h" extern int exynos_build_static_power_table(struct device_node *np, int **var_table, unsigned int *var_volt_size, unsigned int *var_temp_size, char *tz_name); /* * Cooling state <-> CPUFreq frequency * * Cooling states are translated to frequencies throughout this driver and this * is the relation between them. * * Highest cooling state corresponds to lowest possible frequency. * * i.e. * level 0 --> 1st Max Freq * level 1 --> 2nd Max Freq * ... */ /** * struct freq_table - frequency table along with power entries * @frequency: frequency in KHz * @power: power in mW * * This structure is built when the cooling device registers and helps * in translating frequency to power and vice versa. */ struct freq_table { u32 frequency; u32 power; }; /** * struct time_in_idle - Idle time stats * @time: previous reading of the absolute time that this cpu was idle * @timestamp: wall time of the last invocation of get_cpu_idle_time_us() */ struct time_in_idle { u64 time; u64 timestamp; }; static DEFINE_IDA(cpufreq_ida); static DEFINE_MUTEX(cooling_list_lock); static LIST_HEAD(cpufreq_cdev_list); static BLOCKING_NOTIFIER_HEAD(cpu_notifier); /* Below code defines functions to be used for cpufreq as cooling device */ /** ** get_level: Find the level for a particular frequency ** @cpufreq_cdev: cpufreq_cdev for which the property is required ** @freq: Frequency ** ** Return: level corresponding to the frequency. **/ static unsigned long get_level(struct exynos_cpufreq_cooling_device *cpufreq_cdev, unsigned int freq) { struct freq_table *freq_table = cpufreq_cdev->freq_table; unsigned long level; for (level = 1; level <= cpufreq_cdev->max_level; level++) if (freq > freq_table[level].frequency) break; return level - 1; } /** ** cpufreq_cooling_get_level - for a given cpu, return the cooling level. ** @cpu: cpu for which the level is required ** @freq: the frequency of interest ** ** This function will match the cooling level corresponding to the ** requested @freq and return it. ** ** Return: The matched cooling level on success or THERMAL_CSTATE_INVALID ** otherwise. **/ unsigned long cpufreq_cooling_get_level(unsigned int cpu, unsigned int freq) { struct exynos_cpufreq_cooling_device *cpufreq_cdev; mutex_lock(&cooling_list_lock); list_for_each_entry(cpufreq_cdev, &cpufreq_cdev_list, node) { if (cpumask_test_cpu(cpu, cpufreq_cdev->policy->related_cpus)) { unsigned long level = get_level(cpufreq_cdev, freq); mutex_unlock(&cooling_list_lock); return level; } } mutex_unlock(&cooling_list_lock); pr_err("%s: cpu:%d not part of any cooling device\n", __func__, cpu); return THERMAL_CSTATE_INVALID; } EXPORT_SYMBOL_GPL(cpufreq_cooling_get_level); /** * update_freq_table() - Update the freq table with power numbers * @cpufreq_cdev: the cpufreq cooling device in which to update the table * @capacitance: dynamic power coefficient for these cpus * * Update the freq table with power numbers. This table will be used in * cpu_power_to_freq() and cpu_freq_to_power() to convert between power and * frequency efficiently. Power is stored in mW, frequency in KHz. The * resulting table is in descending order. * * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs, * or -ENOMEM if we run out of memory. */ static int update_freq_table(struct exynos_cpufreq_cooling_device *cpufreq_cdev, u32 capacitance) { struct freq_table *freq_table = cpufreq_cdev->freq_table; struct dev_pm_opp *opp; struct device *dev = NULL; int num_opps = 0, cpu = cpufreq_cdev->policy->cpu, i; dev = get_cpu_device(cpu); if (unlikely(!dev)) { dev_warn(&cpufreq_cdev->cdev->device, "No cpu device for cpu %d\n", cpu); return -ENODEV; } num_opps = dev_pm_opp_get_opp_count(dev); if (num_opps < 0) return num_opps; /* * The cpufreq table is also built from the OPP table and so the count * should match. */ if (num_opps != cpufreq_cdev->max_level + 1) { dev_warn(dev, "Number of OPPs not matching with max_levels\n"); return -EINVAL; } for (i = 0; i <= cpufreq_cdev->max_level; i++) { unsigned long freq = freq_table[i].frequency * 1000; u32 freq_mhz = freq_table[i].frequency / 1000; u64 power; u32 voltage_mv; /* * Find ceil frequency as 'freq' may be slightly lower than OPP * freq due to truncation while converting to kHz. */ opp = dev_pm_opp_find_freq_ceil(dev, &freq); if (IS_ERR(opp)) { dev_err(dev, "failed to get opp for %lu frequency\n", freq); return -EINVAL; } voltage_mv = dev_pm_opp_get_voltage(opp) / 1000; dev_pm_opp_put(opp); /* * Do the multiplication with MHz and millivolt so as * to not overflow. */ power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv; do_div(power, 1000000000); /* power is stored in mW */ freq_table[i].power = power; } return 0; } static int lookup_static_power(struct exynos_cpufreq_cooling_device *cpufreq_cdev, unsigned long voltage, int temperature, u32 *power) { int volt_index = 0, temp_index = 0; int index = 0; int num_cpus; int max_cpus; struct cpufreq_policy *policy = cpufreq_cdev->policy; cpumask_t tempmask; cpumask_and(&tempmask, policy->related_cpus, cpu_online_mask); max_cpus = cpumask_weight(policy->related_cpus); num_cpus = cpumask_weight(&tempmask); voltage = voltage / 1000; temperature = temperature / 1000; for (volt_index = 0; volt_index <= cpufreq_cdev->var_volt_size; volt_index++) { if (voltage < cpufreq_cdev->var_table[volt_index * ((int)cpufreq_cdev->var_temp_size + 1)]) { volt_index = volt_index - 1; break; } } if (volt_index == 0) volt_index = 1; if (volt_index > cpufreq_cdev->var_volt_size) volt_index = cpufreq_cdev->var_volt_size; for (temp_index = 0; temp_index <= cpufreq_cdev->var_temp_size; temp_index++) { if (temperature < cpufreq_cdev->var_table[temp_index]) { temp_index = temp_index - 1; break; } } if (temp_index == 0) temp_index = 1; if (temp_index > cpufreq_cdev->var_temp_size) temp_index = cpufreq_cdev->var_temp_size; index = (int)(volt_index * (cpufreq_cdev->var_temp_size + 1) + temp_index); *power = (unsigned int)cpufreq_cdev->var_table[index]; return 0; } static u32 cpu_freq_to_power(struct exynos_cpufreq_cooling_device *cpufreq_cdev, u32 freq) { int i; struct freq_table *freq_table = cpufreq_cdev->freq_table; for (i = 1; i <= cpufreq_cdev->max_level; i++) if (freq > freq_table[i].frequency) break; return freq_table[i - 1].power; } static u32 cpu_power_to_freq(struct exynos_cpufreq_cooling_device *cpufreq_cdev, u32 power) { int i; struct freq_table *freq_table = cpufreq_cdev->freq_table; for (i = 0; i <= cpufreq_cdev->max_level; i++) if (power >= freq_table[i].power) break; i = i <= cpufreq_cdev->max_level ? i: cpufreq_cdev->max_level; return freq_table[i].frequency; } /** * get_load() - get load for a cpu since last updated * @cpufreq_cdev: &struct exynos_cpufreq_cooling_device for this cpu * @cpu: cpu number * @cpu_idx: index of the cpu in time_in_idle* * * Return: The average load of cpu @cpu in percentage since this * function was last called. */ static u32 get_load(struct exynos_cpufreq_cooling_device *cpufreq_cdev, int cpu, int cpu_idx) { u32 load; u64 now, now_idle, delta_time, delta_idle; struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx]; now_idle = get_cpu_idle_time(cpu, &now, 0); delta_idle = now_idle - idle_time->time; delta_time = now - idle_time->timestamp; if (delta_time <= delta_idle) load = 0; else load = div64_u64(100 * (delta_time - delta_idle), delta_time); idle_time->time = now_idle; idle_time->timestamp = now; return load; } /** * get_static_power() - calculate the static power consumed by the cpus * @cpufreq_cdev: struct &exynos_cpufreq_cooling_device for this cpu cdev * @tz: thermal zone device in which we're operating * @freq: frequency in KHz * @power: pointer in which to store the calculated static power * * Calculate the static power consumed by the cpus described by * @cpu_actor running at frequency @freq. This function relies on a * platform specific function that should have been provided when the * actor was registered. If it wasn't, the static power is assumed to * be negligible. The calculated static power is stored in @power. * * Return: 0 on success, -E* on failure. */ static int get_static_power(struct exynos_cpufreq_cooling_device *cpufreq_cdev, struct thermal_zone_device *tz, unsigned long freq, u32 *power) { struct dev_pm_opp *opp; unsigned long voltage; struct cpufreq_policy *policy = cpufreq_cdev->policy; unsigned long freq_hz = freq * 1000; struct device *dev; *power = 0; dev = get_cpu_device(policy->cpu); if (!dev) return 0; opp = dev_pm_opp_find_freq_exact(dev, freq_hz, true); if (IS_ERR(opp)) { return -EINVAL; } voltage = dev_pm_opp_get_voltage(opp); dev_pm_opp_put(opp); if (voltage == 0) { dev_err_ratelimited(dev, "Failed to get voltage for frequency %lu\n", freq_hz); return -EINVAL; } lookup_static_power(cpufreq_cdev, voltage, tz->temperature, power); return 0; } /** * get_dynamic_power() - calculate the dynamic power * @cpufreq_cdev: &exynos_cpufreq_cooling_device for this cdev * @freq: current frequency * * Return: the dynamic power consumed by the cpus described by * @cpufreq_cdev. */ static u32 get_dynamic_power(struct exynos_cpufreq_cooling_device *cpufreq_cdev, unsigned long freq) { u32 raw_cpu_power; raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq); return (raw_cpu_power * cpufreq_cdev->last_load) / 100; } /* cpufreq cooling device callback functions are defined below */ /** * cpufreq_get_max_state - callback function to get the max cooling state. * @cdev: thermal cooling device pointer. * @state: fill this variable with the max cooling state. * * Callback for the thermal cooling device to return the cpufreq * max cooling state. * * Return: 0 on success, an error code otherwise. */ static int cpufreq_get_max_state(struct thermal_cooling_device *cdev, unsigned long *state) { struct exynos_cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; *state = cpufreq_cdev->max_level; return 0; } /** * cpufreq_get_cur_state - callback function to get the current cooling state. * @cdev: thermal cooling device pointer. * @state: fill this variable with the current cooling state. * * Callback for the thermal cooling device to return the cpufreq * current cooling state. * * Return: 0 on success, an error code otherwise. */ static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev, unsigned long *state) { struct exynos_cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; *state = cpufreq_cdev->cpufreq_state; return 0; } /** * cpufreq_set_cur_state - callback function to set the current cooling state. * @cdev: thermal cooling device pointer. * @state: set this variable to the current cooling state. * * Callback for the thermal cooling device to change the cpufreq * current cooling state. * * Return: 0 on success, an error code otherwise. */ static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev, unsigned long state) { struct exynos_cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; int ret; /* Request state should be less than max_level */ if (WARN_ON(state > cpufreq_cdev->max_level)) return -EINVAL; /* Check if the old cooling action is same as new cooling action */ if (cpufreq_cdev->cpufreq_state == state) return 0; cpufreq_cdev->cpufreq_state = state; dbg_snapshot_thermal(NULL, 1001, cpufreq_cdev->cdev->type, cpufreq_cdev->freq_table[state].frequency); ret = freq_qos_update_request(&cpufreq_cdev->qos_req, cpufreq_cdev->freq_table[state].frequency); if (ret == 1) ret = 0; dbg_snapshot_thermal(NULL, 1003, cpufreq_cdev->cdev->type, cpufreq_cdev->policy->max); return ret; } /** * cpufreq_get_requested_power() - get the current power * @cdev: &thermal_cooling_device pointer * @tz: a valid thermal zone device pointer * @power: pointer in which to store the resulting power * * Calculate the current power consumption of the cpus in milliwatts * and store it in @power. This function should actually calculate * the requested power, but it's hard to get the frequency that * cpufreq would have assigned if there were no thermal limits. * Instead, we calculate the current power on the assumption that the * immediate future will look like the immediate past. * * We use the current frequency and the average load since this * function was last called. In reality, there could have been * multiple opps since this function was last called and that affects * the load calculation. While it's not perfectly accurate, this * simplification is good enough and works. REVISIT this, as more * complex code may be needed if experiments show that it's not * accurate enough. * * Return: 0 on success, -E* if getting the static power failed. */ static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev, u32 *power) { unsigned long freq; int i = 0, cpu, ret; u32 static_power, dynamic_power, total_load = 0; struct exynos_cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; struct cpufreq_policy *policy = cpufreq_cdev->policy; u32 *load_cpu = NULL; u32 ncpus; struct thermal_zone_device *tz = cpufreq_cdev->tz; freq = cpufreq_quick_get(policy->cpu); if (freq == 0) { *power = 0; return 0; } if (trace_thermal_exynos_power_cpu_get_power_enabled()) { ncpus = cpumask_weight(policy->related_cpus); load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL); } for_each_cpu(cpu, policy->related_cpus) { u32 load; if (cpu_online(cpu)) load = get_load(cpufreq_cdev, cpu, i); else load = 0; total_load += load; if (load_cpu) load_cpu[i] = load; i++; } cpufreq_cdev->last_load = total_load; dynamic_power = get_dynamic_power(cpufreq_cdev, freq); ret = get_static_power(cpufreq_cdev, tz, freq, &static_power); if (ret) { kfree(load_cpu); return ret; } if (load_cpu) { trace_thermal_exynos_power_cpu_get_power(tz->id, policy->cpu, freq, load_cpu, i, dynamic_power, static_power); kfree(load_cpu); } *power = static_power + dynamic_power; return 0; } /** * cpufreq_state2power() - convert a cpu cdev state to power consumed * @cdev: &thermal_cooling_device pointer * @tz: a valid thermal zone device pointer * @state: cooling device state to be converted * @power: pointer in which to store the resulting power * * Convert cooling device state @state into power consumption in * milliwatts assuming 100% load. Store the calculated power in * @power. * * Return: 0 on success, -EINVAL if the cooling device state could not * be converted into a frequency or other -E* if there was an error * when calculating the static power. */ static int cpufreq_state2power(struct thermal_cooling_device *cdev, unsigned long state, u32 *power) { unsigned int freq, num_cpus; u32 static_power, dynamic_power; int ret; struct exynos_cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; struct thermal_zone_device *tz = cpufreq_cdev->tz; /* Request state should be less than max_level */ if (WARN_ON(state > cpufreq_cdev->max_level)) return -EINVAL; num_cpus = cpumask_weight(cpufreq_cdev->policy->related_cpus); freq = cpufreq_cdev->freq_table[state].frequency; dynamic_power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus; ret = get_static_power(cpufreq_cdev, tz, freq, &static_power); if (ret) return ret; *power = static_power + dynamic_power; return ret; } /** * cpufreq_power2state() - convert power to a cooling device state * @cdev: &thermal_cooling_device pointer * @tz: a valid thermal zone device pointer * @power: power in milliwatts to be converted * @state: pointer in which to store the resulting state * * Calculate a cooling device state for the cpus described by @cdev * that would allow them to consume at most @power mW and store it in * @state. Note that this calculation depends on external factors * such as the cpu load or the current static power. Calling this * function with the same power as input can yield different cooling * device states depending on those external factors. * * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if * the calculated frequency could not be converted to a valid state. * The latter should not happen unless the frequencies available to * cpufreq have changed since the initialization of the cpu cooling * device. */ static int cpufreq_power2state(struct thermal_cooling_device *cdev, u32 power, unsigned long *state) { unsigned int cpu, cur_freq, target_freq; int ret; s32 dyn_power; u32 normalised_power, static_power; struct exynos_cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; struct cpufreq_policy *policy = cpufreq_cdev->policy; int num_cpus; struct thermal_zone_device *tz = cpufreq_cdev->tz; num_cpus = cpumask_weight(policy->related_cpus); cpu = cpumask_first(policy->related_cpus); /* None of our cpus are online */ if (cpu >= nr_cpu_ids || num_cpus == 0) return -ENODEV; cur_freq = cpufreq_quick_get(policy->cpu); ret = get_static_power(cpufreq_cdev, tz, cur_freq, &static_power); if (ret) return ret; dyn_power = power - static_power; dyn_power = dyn_power > 0 ? dyn_power : 0; normalised_power = dyn_power / num_cpus; target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power); *state = cpufreq_cooling_get_level(cpu, target_freq); if (*state == THERMAL_CSTATE_INVALID) { dev_warn_ratelimited(&cdev->device, "Failed to convert %dKHz for cpu %d into a cdev state\n", target_freq, cpu); return -EINVAL; } *state = get_level(cpufreq_cdev, target_freq); trace_thermal_exynos_power_cpu_limit(tz->id, policy->cpu, target_freq, *state, power); return 0; } /* Bind cpufreq callbacks to thermal cooling device ops */ static struct thermal_cooling_device_ops cpufreq_cooling_ops = { .get_max_state = cpufreq_get_max_state, .get_cur_state = cpufreq_get_cur_state, .set_cur_state = cpufreq_set_cur_state, }; static struct thermal_cooling_device_ops cpufreq_power_cooling_ops = { .get_max_state = cpufreq_get_max_state, .get_cur_state = cpufreq_get_cur_state, .set_cur_state = cpufreq_set_cur_state, .get_requested_power = cpufreq_get_requested_power, .state2power = cpufreq_state2power, .power2state = cpufreq_power2state, }; int cpu_cooling_notifier_register(struct notifier_block *n) { return blocking_notifier_chain_register(&cpu_notifier, n); } EXPORT_SYMBOL_GPL(cpu_cooling_notifier_register); int cpu_cooling_notifier_unregister(struct notifier_block *n) { return blocking_notifier_chain_unregister(&cpu_notifier, n); } EXPORT_SYMBOL_GPL(cpu_cooling_notifier_unregister); static unsigned int find_next_max(struct cpufreq_frequency_table *table, unsigned int prev_max) { struct cpufreq_frequency_table *pos; unsigned int max = 0; cpufreq_for_each_valid_entry(pos, table) { if (pos->frequency > max && pos->frequency < prev_max) max = pos->frequency; } return max; } static struct thermal_zone_device* parse_ect_cooling_level(struct thermal_cooling_device *cdev, char *tz_name) { struct thermal_instance *instance; struct thermal_zone_device *tz = NULL; bool foundtz = false; void *thermal_block; struct ect_ap_thermal_function *function; int i, temperature; unsigned int freq; mutex_lock(&cdev->lock); list_for_each_entry(instance, &cdev->thermal_instances, cdev_node) { tz = instance->tz; if (!strncasecmp(tz_name, tz->type, THERMAL_NAME_LENGTH)) { foundtz = true; break; } } mutex_unlock(&cdev->lock); if (!foundtz) goto skip_ect; thermal_block = ect_get_block(BLOCK_AP_THERMAL); if (!thermal_block) goto skip_ect; function = ect_ap_thermal_get_function(thermal_block, tz_name); if (!function) goto skip_ect; for (i = 0; i < function->num_of_range; ++i) { struct exynos_cpufreq_cooling_device *cpufreq_cdev = cdev->devdata; unsigned long max_level = 0; int level; if (function->range_list[i].max_frequency == 2600000 || function->range_list[i].max_frequency == 2496000 || function->range_list[i].max_frequency == 2400000 || function->range_list[i].max_frequency == 2288000 || function->range_list[i].max_frequency == 2112000 || function->range_list[i].max_frequency == 2016000 || function->range_list[i].max_frequency == 1920000) { function->range_list[i].max_frequency = 2704000; } else if (function->range_list[i].max_frequency == 2002000 || function->range_list[i].max_frequency == 1536000) { function->range_list[i].max_frequency = 2210000; } else if (function->range_list[i].max_frequency == 960000) { function->range_list[i].max_frequency = 2002000; } temperature = function->range_list[i].lower_bound_temperature; freq = function->range_list[i].max_frequency; instance = get_thermal_instance(tz, cdev, i); if (!instance) { pr_err("%s: (%s, %d)instance isn't valid\n", __func__, tz_name, i); goto skip_ect; } cdev->ops->get_max_state(cdev, &max_level); level = get_level(cpufreq_cdev, freq); if (level == THERMAL_CSTATE_INVALID) level = max_level; instance->upper = level; pr_info("Parsed From ECT : %s: [%d] Temperature : %d, frequency : %u, level: %d\n", tz_name, i, temperature, freq, level); } skip_ect: return tz; } /** * __cpufreq_cooling_register - helper function to create cpufreq cooling device * @np: a valid struct device_node to the cooling device device tree node * @policy: cpufreq policy * Normally this should be same as cpufreq policy->related_cpus. * @capacitance: dynamic power coefficient for these cpus * @plat_static_func: function to calculate the static power consumed by these * cpus (optional) * * This interface function registers the cpufreq cooling device with the name * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq * cooling devices. It also gives the opportunity to link the cooling device * with a device tree node, in order to bind it via the thermal DT code. * * Return: a valid struct thermal_cooling_device pointer on success, * on failure, it returns a corresponding ERR_PTR(). */ static struct thermal_cooling_device * __cpufreq_cooling_register(struct device_node *np, struct cpufreq_policy *policy, u32 capacitance, get_static_t plat_static_func, char *tz_name) { struct thermal_cooling_device *cdev; struct exynos_cpufreq_cooling_device *cpufreq_cdev; char dev_name[THERMAL_NAME_LENGTH]; unsigned int freq, i, num_cpus; int ret; struct thermal_cooling_device_ops *cooling_ops; if (IS_ERR_OR_NULL(policy)) { pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy); return ERR_PTR(-EINVAL); } i = cpufreq_table_count_valid_entries(policy); if (!i) { pr_debug("%s: CPUFreq table not found or has no valid entries\n", __func__); return ERR_PTR(-ENODEV); } cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL); if (!cpufreq_cdev) return ERR_PTR(-ENOMEM); cpufreq_cdev->policy = policy; num_cpus = cpumask_weight(policy->related_cpus); cpufreq_cdev->idle_time = kcalloc(num_cpus, sizeof(*cpufreq_cdev->idle_time), GFP_KERNEL); if (!cpufreq_cdev->idle_time) { cdev = ERR_PTR(-ENOMEM); goto free_cdev; } /* max_level is an index, not a counter */ cpufreq_cdev->max_level = i - 1; cpufreq_cdev->freq_table = kmalloc_array(i, sizeof(*cpufreq_cdev->freq_table), GFP_KERNEL); if (!cpufreq_cdev->freq_table) { cdev = ERR_PTR(-ENOMEM); goto free_idle_time; } ret = ida_simple_get(&cpufreq_ida, 0, 0, GFP_KERNEL); if (ret < 0) { cdev = ERR_PTR(ret); goto free_table; } cpufreq_cdev->id = ret; snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d", cpufreq_cdev->id); /* Fill freq-table in descending order of frequencies */ for (i = 0, freq = -1; i <= cpufreq_cdev->max_level; i++) { freq = find_next_max(policy->freq_table, freq); cpufreq_cdev->freq_table[i].frequency = freq; /* Warn for duplicate entries */ if (!freq) pr_warn("%s: table has duplicate entries\n", __func__); else pr_debug("%s: freq:%u KHz\n", __func__, freq); } if (capacitance) { ret = update_freq_table(cpufreq_cdev, capacitance); if (ret) { cdev = ERR_PTR(ret); goto remove_ida; } ret = exynos_build_static_power_table(np, &cpufreq_cdev->var_table, &cpufreq_cdev->var_volt_size, &cpufreq_cdev->var_temp_size, tz_name); if (ret) { cdev = ERR_PTR(ret); goto remove_ida; } cooling_ops = &cpufreq_power_cooling_ops; } else { cooling_ops = &cpufreq_cooling_ops; } ret = freq_qos_tracer_add_request(&policy->constraints, &cpufreq_cdev->qos_req, FREQ_QOS_MAX, cpufreq_cdev->freq_table[0].frequency); if (ret < 0) { pr_err("%s: Failed to add freq constraint (%d)\n", __func__, ret); cdev = ERR_PTR(ret); goto remove_ida; } cpufreq_cdev->tz = thermal_zone_get_zone_by_name(tz_name); cdev = thermal_of_cooling_device_register(np, dev_name, cpufreq_cdev, cooling_ops); if (IS_ERR(cdev)) goto remove_qos_req; cpufreq_cdev->tz = parse_ect_cooling_level(cdev, tz_name); cpufreq_cdev->clipped_freq = cpufreq_cdev->freq_table[0].frequency; cpufreq_cdev->cdev = cdev; mutex_lock(&cooling_list_lock); list_add(&cpufreq_cdev->node, &cpufreq_cdev_list); mutex_unlock(&cooling_list_lock); return cdev; remove_qos_req: freq_qos_tracer_remove_request(&cpufreq_cdev->qos_req); remove_ida: ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id); free_table: kfree(cpufreq_cdev->freq_table); free_idle_time: kfree(cpufreq_cdev->idle_time); free_cdev: kfree(cpufreq_cdev); return cdev; } struct thermal_cooling_device * exynos_cpufreq_cooling_register(struct device_node *np, struct cpufreq_policy *policy) { void *gen_block; struct ect_gen_param_table *pwr_coeff; u32 capacitance = 0; u32 index = 0; const char *name; char cooling_name[THERMAL_NAME_LENGTH]; struct device_node *cpu_np = of_get_cpu_node(policy->cpu, NULL); if (!np) return ERR_PTR(-EINVAL); if (!cpu_np) { pr_err("cpu_cooling: OF node not available for cpu%d\n", policy->cpu); of_node_put(cpu_np); return ERR_PTR(-EINVAL); } of_property_read_u32(cpu_np, "dynamic-power-coefficient", &capacitance); of_node_put(cpu_np); if (of_property_read_string(np, "tz-cooling-name", &name)) { pr_err("%s: could not find tz-cooling-name\n", __func__); return ERR_PTR(-EINVAL); } strncpy(cooling_name, name, sizeof(cooling_name)); if (of_property_read_bool(np, "use-em-coeff")) goto regist; if (!of_property_read_u32(np, "ect-coeff-index", &index)) { gen_block = ect_get_block("GEN"); if (gen_block == NULL) { pr_err("%s: Failed to get gen block from ECT\n", __func__); goto regist; } pwr_coeff = ect_gen_param_get_table(gen_block, "DTM_PWR_Coeff"); if (pwr_coeff == NULL) { pr_err("%s: Failed to get power coeff from ECT\n", __func__); goto regist; } capacitance = pwr_coeff->parameter[index]; } else { pr_err("%s: could not find ect-coeff-index\n", __func__); } regist: return __cpufreq_cooling_register(np, policy, capacitance, NULL, cooling_name); } EXPORT_SYMBOL_GPL(exynos_cpufreq_cooling_register);