The uname system-call will return CONFIG_UNAME_OVERRIDE_STRING on struct
new_utsname->release when a process with CONFIG_UNAME_OVERRIDE_TARGET
included in its cmdline calls it.
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
The effective affinity mask causes a lot of bugs by virtue of many
set_irq_affinity handlers only setting an effective affinity mask for an
IRQ's parent but not the IRQ itself. Since this is a widespread issue that
would require manual fixing on every different SoC, just disable the
effective affinity mask altogether and use the first CPU in an affinity
mask configured.
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
None of the pm_qos functions actually run in interrupt context; if some
driver calls pm_qos_update_target in interrupt context then it's already
broken. There's no need to disable interrupts while holding pm_qos_lock,
so don't do it.
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
In preparation for converting bit_spin_lock to rwlock in zsmalloc so
that multiple writers of zspages can run at the same time but those
zspages are supposed to be different zspage instance. Thus, it's not
deadlock. This patch adds write_lock_nested to support the case for
LOCKDEP.
[minchan@kernel.org: fix write_lock_nested for RT]
Link: https://lkml.kernel.org/r/YZfrMTAXV56HFWJY@google.com
[bigeasy@linutronix.de: fixup write_lock_nested() implementation]
Link: https://lkml.kernel.org/r/20211123170134.y6xb7pmpgdn4m3bn@linutronix.de
Link: https://lkml.kernel.org/r/20211115185909.3949505-8-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Unity-based games (such as Wild Rift) like to shoot themselves in the foot
by setting a nonsense CPU affinity, restricting the game to a narrow set of
CPU cores that it thinks are the "big" cores in a heterogeneous CPU. It
assumes that CPUs only have two performance domains (clusters), and
therefore royally mucks up games' CPU affinities on CPUs which have more
than two performance domains.
Check if a setaffinity target task is part of a Unity-based game and
silently ignore the setaffinity request so that it can't sabotage itself.
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
Current users of the rstat code can source root-level statistics from
the native counters of their respective subsystem, allowing them to
forego aggregation at the root level. This optimization is currently
implemented inside the generic rstat code, which doesn't track the root
cgroup and doesn't invoke the subsystem flush callbacks on it.
However, the memory controller cannot do this optimization, because
cgroup1 breaks out memory specifically for the local level, including at
the root level. In preparation for the memory controller switching to
rstat, move the optimization from rstat core to the controllers.
Afterwards, rstat will always track the root cgroup for changes and
invoke the subsystem callbacks on it; and it's up to the subsystem to
special-case and skip aggregation of the root cgroup if it can source
this information through other, cheaper means.
This is the case for the io controller and the cgroup base stats. In
their respective flush callbacks, check whether the parent is the root
cgroup, and if so, skip the unnecessary upward propagation.
The extra cost of tracking the root cgroup is negligible: on stat
changes, we actually remove a branch that checks for the root. The
queueing for a flush touches only per-cpu data, and only the first stat
change since a flush requires a (per-cpu) lock.
Link: https://lkml.kernel.org/r/20210209163304.77088-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry picked from commit dc26532aed0ab25c0801a34640d1f3b9b9098a48)
(cherry picked from commit 69da183fcd0112af130879a1c93113a941e2241b)
(cherry picked from commit ddf1013871482b246147e71a04c865c1be5cf74d)
(cherry picked from commit 30fcd52e18dd1d508b1b22f7c660ac22de734f67)
(cherry picked from commit 19c9a1b9d9ae9a4f359deaf89101f9013254f43d)
(cherry picked from commit 0b4286aea9bb0a6ea6acb723f8396e476044190b)
The protected nodes are:
* dirty_ratio
* dirty_background_ratio
* dirty_bytes
* dirty_background_bytes
* dirty_expire_centisecs
* dirty_writeback_centisecs
* swappiness
This approach is inspired by [1] and makes use of the node tampering blacklist.
[1]: 239efdc263
Signed-off-by: Nahuel Gómez <nahuelgomez329@gmail.com>
Earlier commits in this series allow battery-powered systems to build
their kernels with the default-disabled CONFIG_RCU_LAZY=y Kconfig option.
This Kconfig option causes call_rcu() to delay its callbacks in order
to batch them. This means that a given RCU grace period covers more
callbacks, thus reducing the number of grace periods, in turn reducing
the amount of energy consumed, which increases battery lifetime which
can be a very good thing. This is not a subtle effect: In some important
use cases, the battery lifetime is increased by more than 10%.
This CONFIG_RCU_LAZY=y option is available only for CPUs that offload
callbacks, for example, CPUs mentioned in the rcu_nocbs kernel boot
parameter passed to kernels built with CONFIG_RCU_NOCB_CPU=y.
Delaying callbacks is normally not a problem because most callbacks do
nothing but free memory. If the system is short on memory, a shrinker
will kick all currently queued lazy callbacks out of their laziness,
thus freeing their memory in short order. Similarly, the rcu_barrier()
function, which blocks until all currently queued callbacks are invoked,
will also kick lazy callbacks, thus enabling rcu_barrier() to complete
in a timely manner.
However, there are some cases where laziness is not a good option.
For example, synchronize_rcu() invokes call_rcu(), and blocks until
the newly queued callback is invoked. It would not be a good for
synchronize_rcu() to block for ten seconds, even on an idle system.
Therefore, synchronize_rcu() invokes call_rcu_flush() instead of
call_rcu(). The arrival of a non-lazy call_rcu_flush() callback on a
given CPU kicks any lazy callbacks that might be already queued on that
CPU. After all, if there is going to be a grace period, all callbacks
might as well get full benefit from it.
Yes, this could be done the other way around by creating a
call_rcu_lazy(), but earlier experience with this approach and
feedback at the 2022 Linux Plumbers Conference shifted the approach
to call_rcu() being lazy with call_rcu_flush() for the few places
where laziness is inappropriate.
And another call_rcu() instance that cannot be lazy is the one
in queue_rcu_work(), given that callers to queue_rcu_work() are
not necessarily OK with long delays.
Therefore, make queue_rcu_work() use call_rcu_flush() in order to revert
to the old behavior.
Signed-off-by: Uladzislau Rezki <urezki@gmail.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Limiting CPU capacity updates, which are quite cheap, results in worse
balancing decisions during opportunistic balancing (e.g., SD_BALANCE_WAKE).
This causes opportunistic placement decisions to be skewed using stale CPU
capacity data, and when a CPU isn't idling much, its capacity suffers from
even more staleness since the only exception to the 100 ms capacity update
ratelimit is a CPU exiting idle.
Since the capacity updates are cheap, always do it when load balancing in
order to improve opportunistic task placement decisions.
Change-Id: If1d451ce742fd093010057e31e71012d47fad70a
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
When there are no callbacks pending on an idle system, I noticed that
RCU softirq is continuously firing. During this the cpu_no_qs is set to
false, and core_needs_qs is set to true indefinitely. This causes
rcu_process_callbacks to be repeatedly called, even though the node
corresponding to the CPU has that CPU's mask bit cleared and the system
is idle. I believe the race is when such mask clearing is done during
idle CPU scan of the quiescent state forcing stage in the kthread
instead of the softirq. Since the rnp mask is cleared, but the flags on
the CPU's rdp are not cleared, the CPU thinks it still needs to report
to core RCU.
Cure this by clearing the core_needs_qs flag when the CPU detects that
its node is already updated which will avoid the unwanted softirq raises
to the benefit of real-time systems.
Test: Ran rcutorture for various tree RCU configs.
Change-Id: Iee374d1dcdc74ecc5e6816a99be51feddd876931
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Signed-off-by: mydongistiny <jaysonedson@gmail.com>
commit cfa1a2329a691ffd991fcf7248a57d752e712881 upstream.
The BPF ring buffer internally is implemented as a power-of-2 sized circular
buffer, with two logical and ever-increasing counters: consumer_pos is the
consumer counter to show which logical position the consumer consumed the
data, and producer_pos which is the producer counter denoting the amount of
data reserved by all producers.
Each time a record is reserved, the producer that "owns" the record will
successfully advance producer counter. In user space each time a record is
read, the consumer of the data advanced the consumer counter once it finished
processing. Both counters are stored in separate pages so that from user
space, the producer counter is read-only and the consumer counter is read-write.
One aspect that simplifies and thus speeds up the implementation of both
producers and consumers is how the data area is mapped twice contiguously
back-to-back in the virtual memory, allowing to not take any special measures
for samples that have to wrap around at the end of the circular buffer data
area, because the next page after the last data page would be first data page
again, and thus the sample will still appear completely contiguous in virtual
memory.
Each record has a struct bpf_ringbuf_hdr { u32 len; u32 pg_off; } header for
book-keeping the length and offset, and is inaccessible to the BPF program.
Helpers like bpf_ringbuf_reserve() return `(void *)hdr + BPF_RINGBUF_HDR_SZ`
for the BPF program to use. Bing-Jhong and Muhammad reported that it is however
possible to make a second allocated memory chunk overlapping with the first
chunk and as a result, the BPF program is now able to edit first chunk's
header.
For example, consider the creation of a BPF_MAP_TYPE_RINGBUF map with size
of 0x4000. Next, the consumer_pos is modified to 0x3000 /before/ a call to
bpf_ringbuf_reserve() is made. This will allocate a chunk A, which is in
[0x0,0x3008], and the BPF program is able to edit [0x8,0x3008]. Now, lets
allocate a chunk B with size 0x3000. This will succeed because consumer_pos
was edited ahead of time to pass the `new_prod_pos - cons_pos > rb->mask`
check. Chunk B will be in range [0x3008,0x6010], and the BPF program is able
to edit [0x3010,0x6010]. Due to the ring buffer memory layout mentioned
earlier, the ranges [0x0,0x4000] and [0x4000,0x8000] point to the same data
pages. This means that chunk B at [0x4000,0x4008] is chunk A's header.
bpf_ringbuf_submit() / bpf_ringbuf_discard() use the header's pg_off to then
locate the bpf_ringbuf itself via bpf_ringbuf_restore_from_rec(). Once chunk
B modified chunk A's header, then bpf_ringbuf_commit() refers to the wrong
page and could cause a crash.
Fix it by calculating the oldest pending_pos and check whether the range
from the oldest outstanding record to the newest would span beyond the ring
buffer size. If that is the case, then reject the request. We've tested with
the ring buffer benchmark in BPF selftests (./benchs/run_bench_ringbufs.sh)
before/after the fix and while it seems a bit slower on some benchmarks, it
is still not significantly enough to matter.
Fixes: 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it")
Reported-by: Bing-Jhong Billy Jheng <billy@starlabs.sg>
Reported-by: Muhammad Ramdhan <ramdhan@starlabs.sg>
Co-developed-by: Bing-Jhong Billy Jheng <billy@starlabs.sg>
Co-developed-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Bing-Jhong Billy Jheng <billy@starlabs.sg>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240621140828.18238-1-daniel@iogearbox.net
Signed-off-by: Dominique Martinet <dominique.martinet@atmark-techno.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6715df8d5d24655b9fd368e904028112b54c7de1 upstream.
This commits updates the following functions to allow reads from
uninitialized stack locations when env->allow_uninit_stack option is
enabled:
- check_stack_read_fixed_off()
- check_stack_range_initialized(), called from:
- check_stack_read_var_off()
- check_helper_mem_access()
Such change allows to relax logic in stacksafe() to treat STACK_MISC
and STACK_INVALID in a same way and make the following stack slot
configurations equivalent:
| Cached state | Current state |
| stack slot | stack slot |
|------------------+------------------|
| STACK_INVALID or | STACK_INVALID or |
| STACK_MISC | STACK_SPILL or |
| | STACK_MISC or |
| | STACK_ZERO or |
| | STACK_DYNPTR |
This leads to significant verification speed gains (see below).
The idea was suggested by Andrii Nakryiko [1] and initial patch was
created by Alexei Starovoitov [2].
Currently the env->allow_uninit_stack is allowed for programs loaded
by users with CAP_PERFMON or CAP_SYS_ADMIN capabilities.
A number of test cases from verifier/*.c were expecting uninitialized
stack access to be an error. These test cases were updated to execute
in unprivileged mode (thus preserving the tests).
The test progs/test_global_func10.c expected "invalid indirect read
from stack" error message because of the access to uninitialized
memory region. This error is no longer possible in privileged mode.
The test is updated to provoke an error "invalid indirect access to
stack" because of access to invalid stack address (such error is not
verified by progs/test_global_func*.c series of tests).
The following tests had to be removed because these can't be made
unprivileged:
- verifier/sock.c:
- "sk_storage_get(map, skb->sk, &stack_value, 1): partially init
stack_value"
BPF_PROG_TYPE_SCHED_CLS programs are not executed in unprivileged mode.
- verifier/var_off.c:
- "indirect variable-offset stack access, max_off+size > max_initialized"
- "indirect variable-offset stack access, uninitialized"
These tests verify that access to uninitialized stack values is
detected when stack offset is not a constant. However, variable
stack access is prohibited in unprivileged mode, thus these tests
are no longer valid.
* * *
Here is veristat log comparing this patch with current master on a
set of selftest binaries listed in tools/testing/selftests/bpf/veristat.cfg
and cilium BPF binaries (see [3]):
$ ./veristat -e file,prog,states -C -f 'states_pct<-30' master.log current.log
File Program States (A) States (B) States (DIFF)
-------------------------- -------------------------- ---------- ---------- ----------------
bpf_host.o tail_handle_ipv6_from_host 349 244 -105 (-30.09%)
bpf_host.o tail_handle_nat_fwd_ipv4 1320 895 -425 (-32.20%)
bpf_lxc.o tail_handle_nat_fwd_ipv4 1320 895 -425 (-32.20%)
bpf_sock.o cil_sock4_connect 70 48 -22 (-31.43%)
bpf_sock.o cil_sock4_sendmsg 68 46 -22 (-32.35%)
bpf_xdp.o tail_handle_nat_fwd_ipv4 1554 803 -751 (-48.33%)
bpf_xdp.o tail_lb_ipv4 6457 2473 -3984 (-61.70%)
bpf_xdp.o tail_lb_ipv6 7249 3908 -3341 (-46.09%)
pyperf600_bpf_loop.bpf.o on_event 287 145 -142 (-49.48%)
strobemeta.bpf.o on_event 15915 4772 -11143 (-70.02%)
strobemeta_nounroll2.bpf.o on_event 17087 3820 -13267 (-77.64%)
xdp_synproxy_kern.bpf.o syncookie_tc 21271 6635 -14636 (-68.81%)
xdp_synproxy_kern.bpf.o syncookie_xdp 23122 6024 -17098 (-73.95%)
-------------------------- -------------------------- ---------- ---------- ----------------
Note: I limited selection by states_pct<-30%.
Inspection of differences in pyperf600_bpf_loop behavior shows that
the following patch for the test removes almost all differences:
- a/tools/testing/selftests/bpf/progs/pyperf.h
+ b/tools/testing/selftests/bpf/progs/pyperf.h
@ -266,8 +266,8 @ int __on_event(struct bpf_raw_tracepoint_args *ctx)
}
if (event->pthread_match || !pidData->use_tls) {
- void* frame_ptr;
- FrameData frame;
+ void* frame_ptr = 0;
+ FrameData frame = {};
Symbol sym = {};
int cur_cpu = bpf_get_smp_processor_id();
W/o this patch the difference comes from the following pattern
(for different variables):
static bool get_frame_data(... FrameData *frame ...)
{
...
bpf_probe_read_user(&frame->f_code, ...);
if (!frame->f_code)
return false;
...
bpf_probe_read_user(&frame->co_name, ...);
if (frame->co_name)
...;
}
int __on_event(struct bpf_raw_tracepoint_args *ctx)
{
FrameData frame;
...
get_frame_data(... &frame ...) // indirectly via a bpf_loop & callback
...
}
SEC("raw_tracepoint/kfree_skb")
int on_event(struct bpf_raw_tracepoint_args* ctx)
{
...
ret |= __on_event(ctx);
ret |= __on_event(ctx);
...
}
With regards to value `frame->co_name` the following is important:
- Because of the conditional `if (!frame->f_code)` each call to
__on_event() produces two states, one with `frame->co_name` marked
as STACK_MISC, another with it as is (and marked STACK_INVALID on a
first call).
- The call to bpf_probe_read_user() does not mark stack slots
corresponding to `&frame->co_name` as REG_LIVE_WRITTEN but it marks
these slots as BPF_MISC, this happens because of the following loop
in the check_helper_call():
for (i = 0; i < meta.access_size; i++) {
err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
BPF_WRITE, -1, false);
if (err)
return err;
}
Note the size of the write, it is a one byte write for each byte
touched by a helper. The BPF_B write does not lead to write marks
for the target stack slot.
- Which means that w/o this patch when second __on_event() call is
verified `if (frame->co_name)` will propagate read marks first to a
stack slot with STACK_MISC marks and second to a stack slot with
STACK_INVALID marks and these states would be considered different.
[1] https://lore.kernel.org/bpf/CAEf4BzY3e+ZuC6HUa8dCiUovQRg2SzEk7M-dSkqNZyn=xEmnPA@mail.gmail.com/
[2] https://lore.kernel.org/bpf/CAADnVQKs2i1iuZ5SUGuJtxWVfGYR9kDgYKhq3rNV+kBLQCu7rA@mail.gmail.com/
[3] git@github.com:anakryiko/cilium.git
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Co-developed-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230219200427.606541-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cf3f9a593dab87a032d2b6a6fb205e7f3de4f0a1 upstream.
When mm_update_owner_next() is racing with swapoff (try_to_unuse()) or
/proc or ptrace or page migration (get_task_mm()), it is impossible to
find an appropriate task_struct in the loop whose mm_struct is the same as
the target mm_struct.
If the above race condition is combined with the stress-ng-zombie and
stress-ng-dup tests, such a long loop can easily cause a Hard Lockup in
write_lock_irq() for tasklist_lock.
Recognize this situation in advance and exit early.
Link: https://lkml.kernel.org/r/20240620122123.3877432-1-alexjlzheng@tencent.com
Signed-off-by: Jinliang Zheng <alexjlzheng@tencent.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tycho Andersen <tandersen@netflix.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d3882564a77c21eb746ba5364f3fa89b88de3d61 upstream.
Using sys_io_pgetevents() as the entry point for compat mode tasks
works almost correctly, but misses the sign extension for the min_nr
and nr arguments.
This was addressed on parisc by switching to
compat_sys_io_pgetevents_time64() in commit 6431e92fc827 ("parisc:
io_pgetevents_time64() needs compat syscall in 32-bit compat mode"),
as well as by using more sophisticated system call wrappers on x86 and
s390. However, arm64, mips, powerpc, sparc and riscv still have the
same bug.
Change all of them over to use compat_sys_io_pgetevents_time64()
like parisc already does. This was clearly the intention when the
function was originally added, but it got hooked up incorrectly in
the tables.
Cc: stable@vger.kernel.org
Fixes: 48166e6ea47d ("y2038: add 64-bit time_t syscalls to all 32-bit architectures")
Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 74751ef5c1912ebd3e65c3b65f45587e05ce5d36 ]
In our production environment, we found many hung tasks which are
blocked for more than 18 hours. Their call traces are like this:
[346278.191038] __schedule+0x2d8/0x890
[346278.191046] schedule+0x4e/0xb0
[346278.191049] perf_event_free_task+0x220/0x270
[346278.191056] ? init_wait_var_entry+0x50/0x50
[346278.191060] copy_process+0x663/0x18d0
[346278.191068] kernel_clone+0x9d/0x3d0
[346278.191072] __do_sys_clone+0x5d/0x80
[346278.191076] __x64_sys_clone+0x25/0x30
[346278.191079] do_syscall_64+0x5c/0xc0
[346278.191083] ? syscall_exit_to_user_mode+0x27/0x50
[346278.191086] ? do_syscall_64+0x69/0xc0
[346278.191088] ? irqentry_exit_to_user_mode+0x9/0x20
[346278.191092] ? irqentry_exit+0x19/0x30
[346278.191095] ? exc_page_fault+0x89/0x160
[346278.191097] ? asm_exc_page_fault+0x8/0x30
[346278.191102] entry_SYSCALL_64_after_hwframe+0x44/0xae
The task was waiting for the refcount become to 1, but from the vmcore,
we found the refcount has already been 1. It seems that the task didn't
get woken up by perf_event_release_kernel() and got stuck forever. The
below scenario may cause the problem.
Thread A Thread B
... ...
perf_event_free_task perf_event_release_kernel
...
acquire event->child_mutex
...
get_ctx
... release event->child_mutex
acquire ctx->mutex
...
perf_free_event (acquire/release event->child_mutex)
...
release ctx->mutex
wait_var_event
acquire ctx->mutex
acquire event->child_mutex
# move existing events to free_list
release event->child_mutex
release ctx->mutex
put_ctx
... ...
In this case, all events of the ctx have been freed, so we couldn't
find the ctx in free_list and Thread A will miss the wakeup. It's thus
necessary to add a wakeup after dropping the reference.
Fixes: 1cf8dfe8a661 ("perf/core: Fix race between close() and fork()")
Signed-off-by: Haifeng Xu <haifeng.xu@shopee.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20240513103948.33570-1-haifeng.xu@shopee.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3bd27a847a3a4827a948387cc8f0dbc9fa5931d5 ]
Build environments might be running with different umask settings
resulting in indeterministic file modes for the files contained in
kheaders.tar.xz. The file itself is served with 444, i.e. world
readable. Archive the files explicitly with 744,a+X to improve
reproducibility across build environments.
--mode=0444 is not suitable as directories need to be executable. Also,
444 makes it hard to delete all the readonly files after extraction.
Cc: stable@vger.kernel.org
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 49c386ebbb43394ff4773ce24f726f6afc4c30c8 ]
This reverts commit 700dea5a0bea9f64eba89fae7cb2540326fdfdc1.
The reason for that commit was --sort=ORDER introduced in
tar 1.28 (2014). More than 3 years have passed since then.
Requiring GNU tar 1.28 should be fine now because we require
GCC 5.1 (2015).
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Nicolas Schier <nicolas@fjasle.eu>
Stable-dep-of: 3bd27a847a3a ("kheaders: explicitly define file modes for archived headers")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 01c8f9806bde438ca1c8cbbc439f0a14a6694f6c upstream.
In kcov_remote_start()/kcov_remote_stop(), we swap the previous KCOV
metadata of the current task into a per-CPU variable. However, the
kcov_mode_enabled(mode) check is not sufficient in the case of remote KCOV
coverage: current->kcov_mode always remains KCOV_MODE_DISABLED for remote
KCOV objects.
If the original task that has invoked the KCOV_REMOTE_ENABLE ioctl happens
to get interrupted and kcov_remote_start() is called, it ultimately leads
to kcov_remote_stop() NOT restoring the original KCOV reference. So when
the task exits, all registered remote KCOV handles remain active forever.
The most uncomfortable effect (at least for syzkaller) is that the bug
prevents the reuse of the same /sys/kernel/debug/kcov descriptor. If
we obtain it in the parent process and then e.g. drop some
capabilities and continuously fork to execute individual programs, at
some point current->kcov of the forked process is lost,
kcov_task_exit() takes no action, and all KCOV_REMOTE_ENABLE ioctls
calls from subsequent forks fail.
And, yes, the efficiency is also affected if we keep on losing remote
kcov objects.
a) kcov_remote_map keeps on growing forever.
b) (If I'm not mistaken), we're also not freeing the memory referenced
by kcov->area.
Fix it by introducing a special kcov_mode that is assigned to the task
that owns a KCOV remote object. It makes kcov_mode_enabled() return true
and yet does not trigger coverage collection in __sanitizer_cov_trace_pc()
and write_comp_data().
[nogikh@google.com: replace WRITE_ONCE() with an ordinary assignment]
Link: https://lkml.kernel.org/r/20240614171221.2837584-1-nogikh@google.com
Link: https://lkml.kernel.org/r/20240611133229.527822-1-nogikh@google.com
Fixes: 5ff3b30ab57d ("kcov: collect coverage from interrupts")
Signed-off-by: Aleksandr Nogikh <nogikh@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Tested-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Marco Elver <elver@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c1558bc57b8e5b4da5d821537cd30e2e660861d8 upstream.
Using gcov on kernels compiled with GCC 14 results in truncated 16-byte
long .gcda files with no usable data. To fix this, update GCOV_COUNTERS
to match the value defined by GCC 14.
Tested with GCC versions 14.1.0 and 13.2.0.
Link: https://lkml.kernel.org/r/20240610092743.1609845-1-oberpar@linux.ibm.com
Signed-off-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Reported-by: Allison Henderson <allison.henderson@oracle.com>
Reported-by: Chuck Lever III <chuck.lever@oracle.com>
Tested-by: Chuck Lever <chuck.lever@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 8b9b443fa860276822b25057cb3ff3b28734dec0 ]
The "pipe_count > RCU_TORTURE_PIPE_LEN" check has a comment saying "Should
not happen, but...". This is only true when testing an RCU whose grace
periods are always long enough. This commit therefore fixes this comment.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Closes: https://lore.kernel.org/lkml/CAHk-=wi7rJ-eGq+xaxVfzFEgbL9tdf6Kc8Z89rCpfcQOKm74Tw@mail.gmail.com/
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 58329c4312031603bb1786b44265c26d5065fe72 ]
As the old padata code can execute in softirq context, disable
softirqs for the new padata_do_mutithreaded code too as otherwise
lockdep will get antsy.
Reported-by: syzbot+0cb5bb0f4bf9e79db3b3@syzkaller.appspotmail.com
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7fea700e04bd3f424c2d836e98425782f97b494e ]
kernel_wait4() doesn't sleep and returns -EINTR if there is no
eligible child and signal_pending() is true.
That is why zap_pid_ns_processes() clears TIF_SIGPENDING but this is not
enough, it should also clear TIF_NOTIFY_SIGNAL to make signal_pending()
return false and avoid a busy-wait loop.
Link: https://lkml.kernel.org/r/20240608120616.GB7947@redhat.com
Fixes: 12db8b690010 ("entry: Add support for TIF_NOTIFY_SIGNAL")
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Rachel Menge <rachelmenge@linux.microsoft.com>
Closes: https://lore.kernel.org/all/1386cd49-36d0-4a5c-85e9-bc42056a5a38@linux.microsoft.com/
Reviewed-by: Boqun Feng <boqun.feng@gmail.com>
Tested-by: Wei Fu <fuweid89@gmail.com>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Cc: Allen Pais <apais@linux.microsoft.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Joel Granados <j.granados@samsung.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mike Christie <michael.christie@oracle.com>
Cc: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: Zqiang <qiang.zhang1211@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 07c54cc5988f19c9642fd463c2dbdac7fc52f777 upstream.
After the recent commit 5097cbcb38e6 ("sched/isolation: Prevent boot crash
when the boot CPU is nohz_full") the kernel no longer crashes, but there is
another problem.
In this case tick_setup_device() calls tick_take_do_timer_from_boot() to
update tick_do_timer_cpu and this triggers the WARN_ON_ONCE(irqs_disabled)
in smp_call_function_single().
Kill tick_take_do_timer_from_boot() and just use WRITE_ONCE(), the new
comment explains why this is safe (thanks Thomas!).
Fixes: 08ae95f4fd3b ("nohz_full: Allow the boot CPU to be nohz_full")
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240528122019.GA28794@redhat.com
Link: https://lore.kernel.org/all/20240522151742.GA10400@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit f3010343d9e119da35ee864b3a28993bb5c78ed7 ]
Instead of passing the allow_dups argument to fsnotify_add_mark()
as an argument, define the group flag FSNOTIFY_GROUP_DUPS to express
the allow_dups behavior and set this behavior at group creation time
for all calls of fsnotify_add_mark().
Rename the allow_dups argument to generic add_flags argument for future
use.
Link: https://lore.kernel.org/r/20220422120327.3459282-6-amir73il@gmail.com
Suggested-by: Jan Kara <jack@suse.cz>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 867a448d587e7fa845bceaf4ee1c632448f2a9fa ]
Add flags argument to fsnotify_alloc_group(), define and use the flag
FSNOTIFY_GROUP_USER in inotify and fanotify instead of the helper
fsnotify_alloc_user_group() to indicate user allocation.
Although the flag FSNOTIFY_GROUP_USER is currently not used after group
allocation, we store the flags argument in the group struct for future
use of other group flags.
Link: https://lore.kernel.org/r/20220422120327.3459282-5-amir73il@gmail.com
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f49169c97fceb21ad6a0aaf671c50b0f520f15a5 ]
struct svc_serv_ops is about to be removed.
Neil Brown says:
> I suspect svo_module can go as well - I don't think the thread is
> ever the thing that primarily keeps a module active.
A random sample of kthread_create() callers shows sunrpc is the only
one that manages module reference count in this way.
Suggested-by: Neil Brown <neilb@suse.de>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ca3574bd653aba234a4b31955f2778947403be16 ]
Update module_put_and_exit to call kthread_exit instead of do_exit.
Change the name to reflect this change in functionality. All of the
users of module_put_and_exit are causing the current kthread to exit
so this change makes it clear what is happening. There is no
functional change.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bbda86e988d4c124e4cfa816291cbd583ae8bfb1 ]
The way the per task_struct exit_code is used by kernel threads is not
quite compatible how it is used by userspace applications. The low
byte of the userspace exit_code value encodes the exit signal. While
kthreads just use the value as an int holding ordinary kernel function
exit status like -EPERM.
Add kthread_exit to clearly separate the two kinds of uses.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Stable-dep-of: ca3574bd653a ("exit: Rename module_put_and_exit to module_put_and_kthread_exit")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit dabe729dddca550446e9cc118c96d1f91703345b ]
Clarify argument names and contract for fsnotify_create() and
fsnotify_mkdir() to reflect the anomaly of kernfs, which leaves dentries
negavite after mkdir/create.
Remove the WARN_ON(!inode) in audit code that were added by the Fixes
commit under the wrong assumption that dentries cannot be negative after
mkdir/create.
Fixes: aa93bdc5500c ("fsnotify: use helpers to access data by data_type")
Link: https://lore.kernel.org/linux-fsdevel/87mtp5yz0q.fsf@collabora.com/
Link: https://lore.kernel.org/r/20211025192746.66445-4-krisman@collabora.com
Reviewed-by: Jan Kara <jack@suse.cz>
Reported-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a2071573d6346819cc4e5787b4206f2184985160 ]
This is to let bool variable could be correctly displayed in
big/little endian sysctl procfs. sizeof(bool) is arch dependent,
proc_dobool should work in all arches.
Suggested-by: Pan Xinhui <xinhui@linux.vnet.ibm.com>
Signed-off-by: Jia He <hejianet@gmail.com>
[thuth: rebased the patch to the current kernel version]
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 490b9ba881e2c6337bb09b68010803ae98e59f4a ]
By adding the pidfd_create() declaration to linux/pid.h, we
effectively expose this function to the rest of the kernel. In order
to avoid any unintended behavior, or set false expectations upon this
function, ensure that constraints are forced upon each of the passed
parameters. This includes the checking of whether the passed struct
pid is a thread-group leader as pidfd creation is currently limited to
such pid types.
Link: https://lore.kernel.org/r/2e9b91c2d529d52a003b8b86c45f866153be9eb5.1628398044.git.repnop@google.com
Signed-off-by: Matthew Bobrowski <repnop@google.com>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c576e0fcd6188d0edb50b0fb83f853433ef4819b ]
With the idea of returning pidfds from the fanotify API, we need to
expose a mechanism for creating pidfds. We drop the static qualifier
from pidfd_create() and add its declaration to linux/pid.h so that the
pidfd_create() helper can be called from other kernel subsystems
i.e. fanotify.
Link: https://lore.kernel.org/r/0c68653ec32f1b7143301f0231f7ed14062fd82b.1628398044.git.repnop@google.com
Signed-off-by: Matthew Bobrowski <repnop@google.com>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5b8fea65d197f408bb00b251c70d842826d6b70b ]
fanotify has some hardcoded limits. The only APIs to escape those limits
are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS.
Allow finer grained tuning of the system limits via sysfs tunables under
/proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify,
with some minor differences.
- max_queued_events - global system tunable for group queue size limit.
Like the inotify tunable with the same name, it defaults to 16384 and
applies on initialization of a new group.
- max_user_marks - user ns tunable for marks limit per user.
Like the inotify tunable named max_user_watches, on a machine with
sufficient RAM and it defaults to 1048576 in init userns and can be
further limited per containing user ns.
- max_user_groups - user ns tunable for number of groups per user.
Like the inotify tunable named max_user_instances, it defaults to 128
in init userns and can be further limited per containing user ns.
The slightly different tunable names used for fanotify are derived from
the "group" and "mark" terminology used in the fanotify man pages and
throughout the code.
Considering the fact that the default value for max_user_instances was
increased in kernel v5.10 from 8192 to 1048576, leaving the legacy
fanotify limit of 8192 marks per group in addition to the max_user_marks
limit makes little sense, so the per group marks limit has been removed.
Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own
marks are not accounted in the per user marks account, so in effect the
limit of max_user_marks is only for the collection of groups that are
not initialized with FAN_UNLIMITED_MARKS.
Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com
Suggested-by: Jan Kara <jack@suse.cz>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 02f92b3868a1b34ab98464e76b0e4e060474ba10 ]
Add two simple helpers to check permissions on a file and path
respectively and convert over some callers. It simplifies quite a few
codepaths and also reduces the churn in later patches quite a bit.
Christoph also correctly points out that this makes codepaths (e.g.
ioctls) way easier to follow that would otherwise have to do more
complex argument passing than necessary.
Link: https://lore.kernel.org/r/20210121131959.646623-4-christian.brauner@ubuntu.com
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3e3552056ab42f883d7723eeb42fed712b66bacf ]
kallsyms_on_each_symbol and module_kallsyms_on_each_symbol are only used
by the livepatching code, so don't build them if livepatching is not
enabled.
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 013c1667cf78c1d847152f7116436d82dcab3db4 ]
Require an explicit call to module_kallsyms_on_each_symbol to look
for symbols in modules instead of the call from kallsyms_on_each_symbol,
and acquire module_mutex inside of module_kallsyms_on_each_symbol instead
of leaving that up to the caller. Note that this slightly changes the
behavior for the livepatch code in that the symbols from vmlinux are not
iterated anymore if objname is set, but that actually is the desired
behavior in this case.
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a006050575745ca2be25118b90f1c37f454ac542 ]
Allow for a RCU-sched critical section around find_module, following
the lower level find_module_all helper, and switch the two callers
outside of module.c to use such a RCU-sched critical section instead
of module_mutex.
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ed77e80e14a3cd55c73848b9e8043020e717ce12 ]
Modify get_file_raw_ptr to use task_lookup_fd_rcu. The helper
task_lookup_fd_rcu does the work of taking the task lock and verifying
that task->files != NULL and then calls files_lookup_fd_rcu. So let
use the helper to make a simpler implementation of get_file_raw_ptr.
Acked-by: Cyrill Gorcunov <gorcunov@gmail.com>
Link: https://lkml.kernel.org/r/20201120231441.29911-13-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f36c2943274199cb8aef32ac96531ffb7c4b43d0 ]
This change renames fcheck_files to files_lookup_fd_rcu. All of the
remaining callers take the rcu_read_lock before calling this function
so the _rcu suffix is appropriate. This change also tightens up the
debug check to verify that all callers hold the rcu_read_lock.
All callers that used to call files_check with the files->file_lock
held have now been changed to call files_lookup_fd_locked.
This change of name has helped remind me of which locks and which
guarantees are in place helping me to catch bugs later in the
patchset.
The need for better names became apparent in the last round of
discussion of this set of changes[1].
[1] https://lkml.kernel.org/r/CAHk-=wj8BQbgJFLa+J0e=iT-1qpmCRTbPAJ8gd6MJQ=kbRPqyQ@mail.gmail.com
Link: https://lkml.kernel.org/r/20201120231441.29911-9-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b48845af0152d790a54b8ab78cc2b7c07485fc98 ]
Use the helper fget_task to simplify bpf_task_fd_query.
As well as simplifying the code this removes one unnecessary increment of
struct files_struct. This unnecessary increment of files_struct.count can
result in exec unnecessarily unsharing files_struct and breaking posix
locks, and it can result in fget_light having to fallback to fget reducing
performance.
This simplification comes from the observation that none of the
callers of get_files_struct actually need to call get_files_struct
that was made when discussing[1] exec and posix file locks.
[1] https://lkml.kernel.org/r/20180915160423.GA31461@redhat.com
Suggested-by: Oleg Nesterov <oleg@redhat.com>
v1: https://lkml.kernel.org/r/20200817220425.9389-5-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20201120231441.29911-5-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f43c283a89a7dc531a47d4b1e001503cf3dc3234 ]
Use the helper fget_task and simplify the code.
As well as simplifying the code this removes one unnecessary increment of
struct files_struct. This unnecessary increment of files_struct.count can
result in exec unnecessarily unsharing files_struct and breaking posix
locks, and it can result in fget_light having to fallback to fget reducing
performance.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@gmail.com>
v1: https://lkml.kernel.org/r/20200817220425.9389-4-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20201120231441.29911-4-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1f702603e7125a390b5cdf5ce00539781cfcc86a ]
Now that exec no longer needs to return the unshared files to their
previous value there is no reason to return displaced.
Instead when unshare_fd creates a copy of the file table, call
put_files_struct before returning from unshare_files.
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
v1: https://lkml.kernel.org/r/20200817220425.9389-2-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20201120231441.29911-2-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit c9b51ddb66b1d96e4d364c088da0f1dfb004c574 upstream.
Currently when the current line should be removed from the display
kdb_read() uses memset() to fill a temporary buffer with spaces.
The problem is not that this could be trivially implemented using a
format string rather than open coding it. The real problem is that
it is possible, on systems with a long kdb_prompt_str, to write past
the end of the tmpbuffer.
Happily, as mentioned above, this can be trivially implemented using a
format string. Make it so!
Cc: stable@vger.kernel.org
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Tested-by: Justin Stitt <justinstitt@google.com>
Link: https://lore.kernel.org/r/20240424-kgdb_read_refactor-v3-5-f236dbe9828d@linaro.org
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6244917f377bf64719551b58592a02a0336a7439 upstream.
The code that handles case 14 (down) and case 16 (up) has been copy and
pasted despite being byte-for-byte identical. Combine them.
Cc: stable@vger.kernel.org # Not a bug fix but it is needed for later bug fixes
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Tested-by: Justin Stitt <justinstitt@google.com>
Link: https://lore.kernel.org/r/20240424-kgdb_read_refactor-v3-4-f236dbe9828d@linaro.org
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit db2f9c7dc29114f531df4a425d0867d01e1f1e28 upstream.
Currently, if the cursor position is not at the end of the command buffer
and the user uses the Tab-complete functions, then the console does not
leave the cursor in the correct position.
For example consider the following buffer with the cursor positioned
at the ^:
md kdb_pro 10
^
Pressing tab should result in:
md kdb_prompt_str 10
^
However this does not happen. Instead the cursor is placed at the end
(after then 10) and further cursor movement redraws incorrectly. The
same problem exists when we double-Tab but in a different part of the
code.
Fix this by sending a carriage return and then redisplaying the text to
the left of the cursor.
Cc: stable@vger.kernel.org
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Tested-by: Justin Stitt <justinstitt@google.com>
Link: https://lore.kernel.org/r/20240424-kgdb_read_refactor-v3-3-f236dbe9828d@linaro.org
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 09b35989421dfd5573f0b4683c7700a7483c71f9 upstream.
Currently when kdb_read() needs to reposition the cursor it uses copy and
paste code that works by injecting an '\0' at the cursor position before
delivering a carriage-return and reprinting the line (which stops at the
'\0').
Tidy up the code by hoisting the copy and paste code into an appropriately
named function. Additionally let's replace the '\0' injection with a
proper field width parameter so that the string will be abridged during
formatting instead.
Cc: stable@vger.kernel.org # Not a bug fix but it is needed for later bug fixes
Tested-by: Justin Stitt <justinstitt@google.com>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20240424-kgdb_read_refactor-v3-2-f236dbe9828d@linaro.org
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e9730744bf3af04cda23799029342aa3cddbc454 upstream.
Currently, when the user attempts symbol completion with the Tab key, kdb
will use strncpy() to insert the completed symbol into the command buffer.
Unfortunately it passes the size of the source buffer rather than the
destination to strncpy() with predictably horrible results. Most obviously
if the command buffer is already full but cp, the cursor position, is in
the middle of the buffer, then we will write past the end of the supplied
buffer.
Fix this by replacing the dubious strncpy() calls with memmove()/memcpy()
calls plus explicit boundary checks to make sure we have enough space
before we start moving characters around.
Reported-by: Justin Stitt <justinstitt@google.com>
Closes: https://lore.kernel.org/all/CAFhGd8qESuuifuHsNjFPR-Va3P80bxrw+LqvC8deA8GziUJLpw@mail.gmail.com/
Cc: stable@vger.kernel.org
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Justin Stitt <justinstitt@google.com>
Tested-by: Justin Stitt <justinstitt@google.com>
Link: https://lore.kernel.org/r/20240424-kgdb_read_refactor-v3-1-f236dbe9828d@linaro.org
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a6c11c0a5235fb144a65e0cb2ffd360ddc1f6c32 upstream.
The absence of IRQD_MOVE_PCNTXT prevents immediate effectiveness of
interrupt affinity reconfiguration via procfs. Instead, the change is
deferred until the next instance of the interrupt being triggered on the
original CPU.
When the interrupt next triggers on the original CPU, the new affinity is
enforced within __irq_move_irq(). A vector is allocated from the new CPU,
but the old vector on the original CPU remains and is not immediately
reclaimed. Instead, apicd->move_in_progress is flagged, and the reclaiming
process is delayed until the next trigger of the interrupt on the new CPU.
Upon the subsequent triggering of the interrupt on the new CPU,
irq_complete_move() adds a task to the old CPU's vector_cleanup list if it
remains online. Subsequently, the timer on the old CPU iterates over its
vector_cleanup list, reclaiming old vectors.
However, a rare scenario arises if the old CPU is outgoing before the
interrupt triggers again on the new CPU.
In that case irq_force_complete_move() is not invoked on the outgoing CPU
to reclaim the old apicd->prev_vector because the interrupt isn't currently
affine to the outgoing CPU, and irq_needs_fixup() returns false. Even
though __vector_schedule_cleanup() is later called on the new CPU, it
doesn't reclaim apicd->prev_vector; instead, it simply resets both
apicd->move_in_progress and apicd->prev_vector to 0.
As a result, the vector remains unreclaimed in vector_matrix, leading to a
CPU vector leak.
To address this issue, move the invocation of irq_force_complete_move()
before the irq_needs_fixup() call to reclaim apicd->prev_vector, if the
interrupt is currently or used to be affine to the outgoing CPU.
Additionally, reclaim the vector in __vector_schedule_cleanup() as well,
following a warning message, although theoretically it should never see
apicd->move_in_progress with apicd->prev_cpu pointing to an offline CPU.
Fixes: f0383c24b485 ("genirq/cpuhotplug: Add support for cleaning up move in progress")
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240522220218.162423-1-dongli.zhang@oracle.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 98e948fb60d41447fd8d2d0c3b8637fc6b6dc26d ]
We have seen an influx of syzkaller reports where a BPF program attached to
a tracepoint triggers a locking rule violation by performing a map_delete
on a sockmap/sockhash.
We don't intend to support this artificial use scenario. Extend the
existing verifier allowed-program-type check for updating sockmap/sockhash
to also cover deleting from a map.
From now on only BPF programs which were previously allowed to update
sockmap/sockhash can delete from these map types.
Fixes: ff9105993240 ("bpf, sockmap: Prevent lock inversion deadlock in map delete elem")
Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Reported-by: syzbot+ec941d6e24f633a59172@syzkaller.appspotmail.com
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: syzbot+ec941d6e24f633a59172@syzkaller.appspotmail.com
Acked-by: John Fastabend <john.fastabend@gmail.com>
Closes: https://syzkaller.appspot.com/bug?extid=ec941d6e24f633a59172
Link: https://lore.kernel.org/bpf/20240527-sockmap-verify-deletes-v1-1-944b372f2101@cloudflare.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2a14c9ae15a38148484a128b84bff7e9ffd90d68 ]
It is a useful helper hence move it to common code so others can enjoy
it.
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Stable-dep-of: 3ebc46ca8675 ("tcp: Fix shift-out-of-bounds in dctcp_update_alpha().")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a1fd0b9d751f840df23ef0e75b691fc00cfd4743 ]
Change relax_domain_level checks so that it would be possible
to include or exclude all domains from newidle balancing.
This matches the behavior described in the documentation:
-1 no request. use system default or follow request of others.
0 no search.
1 search siblings (hyperthreads in a core).
"2" enables levels 0 and 1, level_max excludes the last (level_max)
level, and level_max+1 includes all levels.
Fixes: 1d3504fcf560 ("sched, cpuset: customize sched domains, core")
Signed-off-by: Vitalii Bursov <vitaly@bursov.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/bd6de28e80073c79466ec6401cdeae78f0d4423d.1714488502.git.vitaly@bursov.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit c2274b908db05529980ec056359fae916939fdaa upstream.
The reader code in rb_get_reader_page() swaps a new reader page into the
ring buffer by doing cmpxchg on old->list.prev->next to point it to the
new page. Following that, if the operation is successful,
old->list.next->prev gets updated too. This means the underlying
doubly-linked list is temporarily inconsistent, page->prev->next or
page->next->prev might not be equal back to page for some page in the
ring buffer.
The resize operation in ring_buffer_resize() can be invoked in parallel.
It calls rb_check_pages() which can detect the described inconsistency
and stop further tracing:
[ 190.271762] ------------[ cut here ]------------
[ 190.271771] WARNING: CPU: 1 PID: 6186 at kernel/trace/ring_buffer.c:1467 rb_check_pages.isra.0+0x6a/0xa0
[ 190.271789] Modules linked in: [...]
[ 190.271991] Unloaded tainted modules: intel_uncore_frequency(E):1 skx_edac(E):1
[ 190.272002] CPU: 1 PID: 6186 Comm: cmd.sh Kdump: loaded Tainted: G E 6.9.0-rc6-default #5 158d3e1e6d0b091c34c3b96bfd99a1c58306d79f
[ 190.272011] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552c-rebuilt.opensuse.org 04/01/2014
[ 190.272015] RIP: 0010:rb_check_pages.isra.0+0x6a/0xa0
[ 190.272023] Code: [...]
[ 190.272028] RSP: 0018:ffff9c37463abb70 EFLAGS: 00010206
[ 190.272034] RAX: ffff8eba04b6cb80 RBX: 0000000000000007 RCX: ffff8eba01f13d80
[ 190.272038] RDX: ffff8eba01f130c0 RSI: ffff8eba04b6cd00 RDI: ffff8eba0004c700
[ 190.272042] RBP: ffff8eba0004c700 R08: 0000000000010002 R09: 0000000000000000
[ 190.272045] R10: 00000000ffff7f52 R11: ffff8eba7f600000 R12: ffff8eba0004c720
[ 190.272049] R13: ffff8eba00223a00 R14: 0000000000000008 R15: ffff8eba067a8000
[ 190.272053] FS: 00007f1bd64752c0(0000) GS:ffff8eba7f680000(0000) knlGS:0000000000000000
[ 190.272057] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 190.272061] CR2: 00007f1bd6662590 CR3: 000000010291e001 CR4: 0000000000370ef0
[ 190.272070] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 190.272073] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 190.272077] Call Trace:
[ 190.272098] <TASK>
[ 190.272189] ring_buffer_resize+0x2ab/0x460
[ 190.272199] __tracing_resize_ring_buffer.part.0+0x23/0xa0
[ 190.272206] tracing_resize_ring_buffer+0x65/0x90
[ 190.272216] tracing_entries_write+0x74/0xc0
[ 190.272225] vfs_write+0xf5/0x420
[ 190.272248] ksys_write+0x67/0xe0
[ 190.272256] do_syscall_64+0x82/0x170
[ 190.272363] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 190.272373] RIP: 0033:0x7f1bd657d263
[ 190.272381] Code: [...]
[ 190.272385] RSP: 002b:00007ffe72b643f8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 190.272391] RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007f1bd657d263
[ 190.272395] RDX: 0000000000000002 RSI: 0000555a6eb538e0 RDI: 0000000000000001
[ 190.272398] RBP: 0000555a6eb538e0 R08: 000000000000000a R09: 0000000000000000
[ 190.272401] R10: 0000555a6eb55190 R11: 0000000000000246 R12: 00007f1bd6662500
[ 190.272404] R13: 0000000000000002 R14: 00007f1bd6667c00 R15: 0000000000000002
[ 190.272412] </TASK>
[ 190.272414] ---[ end trace 0000000000000000 ]---
Note that ring_buffer_resize() calls rb_check_pages() only if the parent
trace_buffer has recording disabled. Recent commit d78ab792705c
("tracing: Stop current tracer when resizing buffer") causes that it is
now always the case which makes it more likely to experience this issue.
The window to hit this race is nonetheless very small. To help
reproducing it, one can add a delay loop in rb_get_reader_page():
ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
if (!ret)
goto spin;
for (unsigned i = 0; i < 1U << 26; i++) /* inserted delay loop */
__asm__ __volatile__ ("" : : : "memory");
rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
.. and then run the following commands on the target system:
echo 1 > /sys/kernel/tracing/events/sched/sched_switch/enable
while true; do
echo 16 > /sys/kernel/tracing/buffer_size_kb; sleep 0.1
echo 8 > /sys/kernel/tracing/buffer_size_kb; sleep 0.1
done &
while true; do
for i in /sys/kernel/tracing/per_cpu/*; do
timeout 0.1 cat $i/trace_pipe; sleep 0.2
done
done
To fix the problem, make sure ring_buffer_resize() doesn't invoke
rb_check_pages() concurrently with a reader operating on the same
ring_buffer_per_cpu by taking its cpu_buffer->reader_lock.
Link: https://lore.kernel.org/linux-trace-kernel/20240517134008.24529-3-petr.pavlu@suse.com
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 659f451ff213 ("ring-buffer: Add integrity check at end of iter read")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
[ Fixed whitespace ]
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5af385f5f4cddf908f663974847a4083b2ff2c79 upstream.
bits_per() rounds up to the next power of two when passed a power of
two. This causes crashes on some machines and configurations.
Reported-by: Михаил Новоселов <m.novosyolov@rosalinux.ru>
Tested-by: Ильфат Гаптрахманов <i.gaptrakhmanov@rosalinux.ru>
Link: https://gitlab.freedesktop.org/drm/amd/-/issues/3347
Link: https://lore.kernel.org/all/1c978cf1-2934-4e66-e4b3-e81b04cb3571@rosalinux.ru/
Fixes: f2d5dcb48f7b (bounds: support non-power-of-two CONFIG_NR_CPUS)
Cc: <stable@vger.kernel.org>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fe42754b94a42d08cf9501790afc25c4f6a5f631 upstream.
Rename x86's to CPU_MITIGATIONS, define it in generic code, and force it
on for all architectures exception x86. A recent commit to turn
mitigations off by default if SPECULATION_MITIGATIONS=n kinda sorta
missed that "cpu_mitigations" is completely generic, whereas
SPECULATION_MITIGATIONS is x86-specific.
Rename x86's SPECULATIVE_MITIGATIONS instead of keeping both and have it
select CPU_MITIGATIONS, as having two configs for the same thing is
unnecessary and confusing. This will also allow x86 to use the knob to
manage mitigations that aren't strictly related to speculative
execution.
Use another Kconfig to communicate to common code that CPU_MITIGATIONS
is already defined instead of having x86's menu depend on the common
CPU_MITIGATIONS. This allows keeping a single point of contact for all
of x86's mitigations, and it's not clear that other architectures *want*
to allow disabling mitigations at compile-time.
Fixes: f337a6a21e2f ("x86/cpu: Actually turn off mitigations by default for SPECULATION_MITIGATIONS=n")
Closes: https://lkml.kernel.org/r/20240413115324.53303a68%40canb.auug.org.au
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240420000556.2645001-2-seanjc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a90afe8d020da9298c98fddb19b7a6372e2feb45 upstream.
If the perf buffer isn't large enough, provide a hint about how large it
needs to be for whatever is running.
Link: https://lkml.kernel.org/r/20210831043723.13481-1-robbat2@gentoo.org
Signed-off-by: Robin H. Johnson <robbat2@gentoo.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@igalia.com>
This reverts commit 56cfbe60710772916a5ba092c99542332b48e870 which is
commit 0958b33ef5a04ed91f61cef4760ac412080c4e08 upstream.
The change has an incorrect assumption about the return value because
in the current stable trees for versions 5.15 and before, the following
commit responsible for making 0 a success value is not present:
b8cc44a4d3c1 ("tracing: Remove logic for registering multiple event triggers at a time")
The return value should be 0 on failure in the current tree, because in
the functions event_trigger_callback() and event_enable_trigger_func(),
we have:
ret = cmd_ops->reg(glob, trigger_ops, trigger_data, file);
/*
* The above returns on success the # of functions enabled,
* but if it didn't find any functions it returns zero.
* Consider no functions a failure too.
*/
if (!ret) {
ret = -ENOENT;
Cc: stable@kernel.org # 5.15, 5.10, 5.4, 4.19
Signed-off-by: Siddh Raman Pant <siddh.raman.pant@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 325f3fb551f8cd672dbbfc4cf58b14f9ee3fc9e8 upstream.
When unloading a module, its state is changing MODULE_STATE_LIVE ->
MODULE_STATE_GOING -> MODULE_STATE_UNFORMED. Each change will take
a time. `is_module_text_address()` and `__module_text_address()`
works with MODULE_STATE_LIVE and MODULE_STATE_GOING.
If we use `is_module_text_address()` and `__module_text_address()`
separately, there is a chance that the first one is succeeded but the
next one is failed because module->state becomes MODULE_STATE_UNFORMED
between those operations.
In `check_kprobe_address_safe()`, if the second `__module_text_address()`
is failed, that is ignored because it expected a kernel_text address.
But it may have failed simply because module->state has been changed
to MODULE_STATE_UNFORMED. In this case, arm_kprobe() will try to modify
non-exist module text address (use-after-free).
To fix this problem, we should not use separated `is_module_text_address()`
and `__module_text_address()`, but use only `__module_text_address()`
once and do `try_module_get(module)` which is only available with
MODULE_STATE_LIVE.
Link: https://lore.kernel.org/all/20240410015802.265220-1-zhengyejian1@huawei.com/
Fixes: 28f6c37a2910 ("kprobes: Forbid probing on trampoline and BPF code areas")
Cc: stable@vger.kernel.org
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
[Fix conflict due to lack dependency
commit 223a76b268c9 ("kprobes: Fix coding style issues")]
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f337a6a21e2fd67eadea471e93d05dd37baaa9be upstream.
Initialize cpu_mitigations to CPU_MITIGATIONS_OFF if the kernel is built
with CONFIG_SPECULATION_MITIGATIONS=n, as the help text quite clearly
states that disabling SPECULATION_MITIGATIONS is supposed to turn off all
mitigations by default.
│ If you say N, all mitigations will be disabled. You really
│ should know what you are doing to say so.
As is, the kernel still defaults to CPU_MITIGATIONS_AUTO, which results in
some mitigations being enabled in spite of SPECULATION_MITIGATIONS=n.
Fixes: f43b9876e857 ("x86/retbleed: Add fine grained Kconfig knobs")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Cc: stable@vger.kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20240409175108.1512861-2-seanjc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit f1e30cb6369251c03f63c564006f96a54197dcc4 ]
In function ring_buffer_iter_empty(), cpu_buffer->commit_page is read
while other threads may change it. It may cause the time_stamp that read
in the next line come from a different page. Use READ_ONCE() to avoid
having to reason about compiler optimizations now and in future.
Link: https://lore.kernel.org/linux-trace-kernel/tencent_DFF7D3561A0686B5E8FC079150A02505180A@qq.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: linke li <lilinke99@qq.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d988d9a9b9d180bfd5c1d353b3b176cb90d6861b ]
If the kernel crashes in a context where printk() calls always
defer printing (such as in NMI or inside a printk_safe section)
then the final panic messages will be deferred to irq_work. But
if irq_work is not available, the messages will not get printed
unless explicitly flushed. The result is that the final
"end Kernel panic" banner does not get printed.
Add one final flush after the last printk() call to make sure
the final panic messages make it out as well.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20240207134103.1357162-14-john.ogness@linutronix.de
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ecc6a2101840177e57c925c102d2d29f260d37c8 ]
This patch re-introduces protection against the size of access to stack
memory being negative; the access size can appear negative as a result
of overflowing its signed int representation. This should not actually
happen, as there are other protections along the way, but we should
protect against it anyway. One code path was missing such protections
(fixed in the previous patch in the series), causing out-of-bounds array
accesses in check_stack_range_initialized(). This patch causes the
verification of a program with such a non-sensical access size to fail.
This check used to exist in a more indirect way, but was inadvertendly
removed in a833a17aeac7.
Fixes: a833a17aeac7 ("bpf: Fix verification of indirect var-off stack access")
Reported-by: syzbot+33f4297b5f927648741a@syzkaller.appspotmail.com
Reported-by: syzbot+aafd0513053a1cbf52ef@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/bpf/CAADnVQLORV5PT0iTAhRER+iLBTkByCYNBYyvBSgjN1T31K+gOw@mail.gmail.com/
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Link: https://lore.kernel.org/r/20240327024245.318299-3-andreimatei1@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 6b959ba22d34ca793ffdb15b5715457c78e38b1a upstream.
perf_output_read_group may respond to IPI request of other cores and invoke
__perf_install_in_context function. As a result, hwc configuration is modified.
causing inconsistency and unexpected consequences.
Interrupts are not disabled when perf_output_read_group reads PMU counter.
In this case, IPI request may be received from other cores.
As a result, PMU configuration is modified and an error occurs when
reading PMU counter:
CPU0 CPU1
__se_sys_perf_event_open
perf_install_in_context
perf_output_read_group smp_call_function_single
for_each_sibling_event(sub, leader) { generic_exec_single
if ((sub != event) && remote_function
(sub->state == PERF_EVENT_STATE_ACTIVE)) |
<enter IPI handler: __perf_install_in_context> <----RAISE IPI-----+
__perf_install_in_context
ctx_resched
event_sched_out
armpmu_del
...
hwc->idx = -1; // event->hwc.idx is set to -1
...
<exit IPI>
sub->pmu->read(sub);
armpmu_read
armv8pmu_read_counter
armv8pmu_read_hw_counter
int idx = event->hw.idx; // idx = -1
u64 val = armv8pmu_read_evcntr(idx);
u32 counter = ARMV8_IDX_TO_COUNTER(idx); // invalid counter = 30
read_pmevcntrn(counter) // undefined instruction
Signed-off-by: Yang Jihong <yangjihong1@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220902082918.179248-1-yangjihong1@huawei.com
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@igalia.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 8145f1c35fa648da662078efab299c4467b85ad5 ]
If a reader of the ring buffer is doing a poll, and waiting for the ring
buffer to hit a specific watermark, there could be a case where it gets
into an infinite ping-pong loop.
The poll code has:
rbwork->full_waiters_pending = true;
if (!cpu_buffer->shortest_full ||
cpu_buffer->shortest_full > full)
cpu_buffer->shortest_full = full;
The writer will see full_waiters_pending and check if the ring buffer is
filled over the percentage of the shortest_full value. If it is, it calls
an irq_work to wake up all the waiters.
But the code could get into a circular loop:
CPU 0 CPU 1
----- -----
[ Poll ]
[ shortest_full = 0 ]
rbwork->full_waiters_pending = true;
if (rbwork->full_waiters_pending &&
[ buffer percent ] > shortest_full) {
rbwork->wakeup_full = true;
[ queue_irqwork ]
cpu_buffer->shortest_full = full;
[ IRQ work ]
if (rbwork->wakeup_full) {
cpu_buffer->shortest_full = 0;
wakeup poll waiters;
[woken]
if ([ buffer percent ] > full)
break;
rbwork->full_waiters_pending = true;
if (rbwork->full_waiters_pending &&
[ buffer percent ] > shortest_full) {
rbwork->wakeup_full = true;
[ queue_irqwork ]
cpu_buffer->shortest_full = full;
[ IRQ work ]
if (rbwork->wakeup_full) {
cpu_buffer->shortest_full = 0;
wakeup poll waiters;
[woken]
[ Wash, rinse, repeat! ]
In the poll, the shortest_full needs to be set before the
full_pending_waiters, as once that is set, the writer will compare the
current shortest_full (which is incorrect) to decide to call the irq_work,
which will reset the shortest_full (expecting the readers to update it).
Also move the setting of full_waiters_pending after the check if the ring
buffer has the required percentage filled. There's no reason to tell the
writer to wake up waiters if there are no waiters.
Link: https://lore.kernel.org/linux-trace-kernel/20240312131952.630922155@goodmis.org
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 42fb0a1e84ff5 ("tracing/ring-buffer: Have polling block on watermark")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 68282dd930ea38b068ce2c109d12405f40df3f93 ]
The "shortest_full" variable is used to keep track of the waiter that is
waiting for the smallest amount on the ring buffer before being woken up.
When a tasks waits on the ring buffer, it passes in a "full" value that is
a percentage. 0 means wake up on any data. 1-100 means wake up from 1% to
100% full buffer.
As all waiters are on the same wait queue, the wake up happens for the
waiter with the smallest percentage.
The problem is that the smallest_full on the cpu_buffer that stores the
smallest amount doesn't get reset when all the waiters are woken up. It
does get reset when the ring buffer is reset (echo > /sys/kernel/tracing/trace).
This means that tasks may be woken up more often then when they want to
be. Instead, have the shortest_full field get reset just before waking up
all the tasks. If the tasks wait again, they will update the shortest_full
before sleeping.
Also add locking around setting of shortest_full in the poll logic, and
change "work" to "rbwork" to match the variable name for rb_irq_work
structures that are used in other places.
Link: https://lore.kernel.org/linux-trace-kernel/20240308202431.948914369@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: 2c2b0a78b3739 ("ring-buffer: Add percentage of ring buffer full to wake up reader")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: 8145f1c35fa6 ("ring-buffer: Fix full_waiters_pending in poll")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 761d9473e27f0c8782895013a3e7b52a37c8bcfc ]
The rb_watermark_hit() checks if the amount of data in the ring buffer is
above the percentage level passed in by the "full" variable. If it is, it
returns true.
But it also sets the "shortest_full" field of the cpu_buffer that informs
writers that it needs to call the irq_work if the amount of data on the
ring buffer is above the requested amount.
The rb_watermark_hit() always sets the shortest_full even if the amount in
the ring buffer is what it wants. As it is not going to wait, because it
has what it wants, there's no reason to set shortest_full.
Link: https://lore.kernel.org/linux-trace-kernel/20240312115641.6aa8ba08@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 42fb0a1e84ff5 ("tracing/ring-buffer: Have polling block on watermark")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b3594573681b53316ec0365332681a30463edfd6 ]
A task can wait on a ring buffer for when it fills up to a specific
watermark. The writer will check the minimum watermark that waiters are
waiting for and if the ring buffer is past that, it will wake up all the
waiters.
The waiters are in a wait loop, and will first check if a signal is
pending and then check if the ring buffer is at the desired level where it
should break out of the loop.
If a file that uses a ring buffer closes, and there's threads waiting on
the ring buffer, it needs to wake up those threads. To do this, a
"wait_index" was used.
Before entering the wait loop, the waiter will read the wait_index. On
wakeup, it will check if the wait_index is different than when it entered
the loop, and will exit the loop if it is. The waker will only need to
update the wait_index before waking up the waiters.
This had a couple of bugs. One trivial one and one broken by design.
The trivial bug was that the waiter checked the wait_index after the
schedule() call. It had to be checked between the prepare_to_wait() and
the schedule() which it was not.
The main bug is that the first check to set the default wait_index will
always be outside the prepare_to_wait() and the schedule(). That's because
the ring_buffer_wait() doesn't have enough context to know if it should
break out of the loop.
The loop itself is not needed, because all the callers to the
ring_buffer_wait() also has their own loop, as the callers have a better
sense of what the context is to decide whether to break out of the loop
or not.
Just have the ring_buffer_wait() block once, and if it gets woken up, exit
the function and let the callers decide what to do next.
Link: https://lore.kernel.org/all/CAHk-=whs5MdtNjzFkTyaUy=vHi=qwWgPi0JgTe6OYUYMNSRZfg@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240308202431.792933613@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: e30f53aad2202 ("tracing: Do not busy wait in buffer splice")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: 761d9473e27f ("ring-buffer: Do not set shortest_full when full target is hit")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 801410b26a0e8b8a16f7915b2b55c9528b69ca87 ]
During the handoff from earlycon to the real console driver, we have
two separate drivers operating on the same device concurrently. In the
case of the 8250 driver these concurrent accesses cause problems due
to the driver's use of banked registers, controlled by LCR.DLAB. It is
possible for the setup(), config_port(), pm() and set_mctrl() callbacks
to set DLAB, which can cause the earlycon code that intends to access
TX to instead access DLL, leading to missed output and corruption on
the serial line due to unintended modifications to the baud rate.
In particular, for setup() we have:
univ8250_console_setup()
-> serial8250_console_setup()
-> uart_set_options()
-> serial8250_set_termios()
-> serial8250_do_set_termios()
-> serial8250_do_set_divisor()
For config_port() we have:
serial8250_config_port()
-> autoconfig()
For pm() we have:
serial8250_pm()
-> serial8250_do_pm()
-> serial8250_set_sleep()
For set_mctrl() we have (for some devices):
serial8250_set_mctrl()
-> omap8250_set_mctrl()
-> __omap8250_set_mctrl()
To avoid such problems, let's make it so that the console is locked
during pre-registration calls to these callbacks, which will prevent
the earlycon driver from running concurrently.
Remove the partial solution to this problem in the 8250 driver
that locked the console only during autoconfig_irq(), as this would
result in a deadlock with the new approach. The console continues
to be locked during autoconfig_irq() because it can only be called
through uart_configure_port().
Although this patch introduces more locking than strictly necessary
(and in particular it also locks during the call to rs485_config()
which is not affected by this issue as far as I can tell), it follows
the principle that it is the responsibility of the generic console
code to manage the earlycon handoff by ensuring that earlycon and real
console driver code cannot run concurrently, and not the individual
drivers.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: John Ogness <john.ogness@linutronix.de>
Link: https://linux-review.googlesource.com/id/I7cf8124dcebf8618e6b2ee543fa5b25532de55d8
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240304214350.501253-1-pcc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ed758b30d541e9bf713cd58612a4414e57dc6d73 ]
Put the code enabling a console by default into a separate function
called try_enable_default_console().
Rename try_enable_new_console() to try_enable_preferred_console() to
make the purpose of the different variants more clear.
It is a code refactoring without any functional change.
Signed-off-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Link: https://lore.kernel.org/r/20211122132649.12737-2-pmladek@suse.com
Stable-dep-of: 801410b26a0e ("serial: Lock console when calling into driver before registration")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9bc4ffd32ef8943f5c5a42c9637cfd04771d021b ]
psci_init_system_suspend() invokes suspend_set_ops() very early during
bootup even before kernel command line for mem_sleep_default is setup.
This leads to kernel command line mem_sleep_default=s2idle not working
as mem_sleep_current gets changed to deep via suspend_set_ops() and never
changes back to s2idle.
Set mem_sleep_current along with mem_sleep_default during kernel command
line setup as default suspend mode.
Fixes: faf7ec4a92c0 ("drivers: firmware: psci: add system suspend support")
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Maulik Shah <quic_mkshah@quicinc.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f2d5dcb48f7ba9e3ff249d58fc1fa963d374e66a ]
ilog2() rounds down, so for example when PowerPC 85xx sets CONFIG_NR_CPUS
to 24, we will only allocate 4 bits to store the number of CPUs instead of
5. Use bits_per() instead, which rounds up. Found by code inspection.
The effect of this would probably be a misaccounting when doing NUMA
balancing, so to a user, it would only be a performance penalty. The
effects may be more wide-spread; it's hard to tell.
Link: https://lkml.kernel.org/r/20231010145549.1244748-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Fixes: 90572890d202 ("mm: numa: Change page last {nid,pid} into {cpu,pid}")
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9b13df3fb64ee95e2397585404e442afee2c7d4f ]
The timer related functions do not have a strict timer_ prefixed namespace
which is really annoying.
Rename del_timer_sync() to timer_delete_sync() and provide del_timer_sync()
as a wrapper. Document that del_timer_sync() is not for new code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/r/20221123201624.954785441@linutronix.de
Stable-dep-of: 0f7352557a35 ("wifi: brcmfmac: Fix use-after-free bug in brcmf_cfg80211_detach")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 168f6b6ffbeec0b9333f3582e4cf637300858db5 ]
del_timer_sync() is assumed to be pointless on uniprocessor systems and can
be mapped to del_timer() because in theory del_timer() can never be invoked
while the timer callback function is executed.
This is not entirely true because del_timer() can be invoked from interrupt
context and therefore hit in the middle of a running timer callback.
Contrary to that del_timer_sync() is not allowed to be invoked from
interrupt context unless the affected timer is marked with TIMER_IRQSAFE.
del_timer_sync() has proper checks in place to detect such a situation.
Give up on the UP optimization and make del_timer_sync() unconditionally
available.
Co-developed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/all/20220407161745.7d6754b3@gandalf.local.home
Link: https://lore.kernel.org/all/20221110064101.429013735@goodmis.org
Link: https://lore.kernel.org/r/20221123201624.888306160@linutronix.de
Stable-dep-of: 0f7352557a35 ("wifi: brcmfmac: Fix use-after-free bug in brcmf_cfg80211_detach")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 14f043f1340bf30bc60af127bff39f55889fef26 ]
The kernel-doc of timer related functions is partially uncomprehensible
word salad. Rewrite it to make it useful.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/r/20221123201624.828703870@linutronix.de
Stable-dep-of: 0f7352557a35 ("wifi: brcmfmac: Fix use-after-free bug in brcmf_cfg80211_detach")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 00bf63122459e87193ee7f1bc6161c83a525569f ]
When there are heavy load, cpumap kernel threads can be busy polling
packets from redirect queues and block out RCU tasks from reaching
quiescent states. It is insufficient to just call cond_resched() in such
context. Periodically raise a consolidated RCU QS before cond_resched
fixes the problem.
Fixes: 6710e1126934 ("bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP")
Reviewed-by: Jesper Dangaard Brouer <hawk@kernel.org>
Signed-off-by: Yan Zhai <yan@cloudflare.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/c17b9f1517e19d813da3ede5ed33ee18496bb5d8.1710877680.git.yan@cloudflare.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7a4b21250bf79eef26543d35bd390448646c536b ]
The stackmap code relies on roundup_pow_of_two() to compute the number
of hash buckets, and contains an overflow check by checking if the
resulting value is 0. However, on 32-bit arches, the roundup code itself
can overflow by doing a 32-bit left-shift of an unsigned long value,
which is undefined behaviour, so it is not guaranteed to truncate
neatly. This was triggered by syzbot on the DEVMAP_HASH type, which
contains the same check, copied from the hashtab code.
The commit in the fixes tag actually attempted to fix this, but the fix
did not account for the UB, so the fix only works on CPUs where an
overflow does result in a neat truncation to zero, which is not
guaranteed. Checking the value before rounding does not have this
problem.
Fixes: 6183f4d3a0a2 ("bpf: Check for integer overflow when using roundup_pow_of_two()")
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Reviewed-by: Bui Quang Minh <minhquangbui99@gmail.com>
Message-ID: <20240307120340.99577-4-toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6787d916c2cf9850c97a0a3f73e08c43e7d973b1 ]
The hashtab code relies on roundup_pow_of_two() to compute the number of
hash buckets, and contains an overflow check by checking if the
resulting value is 0. However, on 32-bit arches, the roundup code itself
can overflow by doing a 32-bit left-shift of an unsigned long value,
which is undefined behaviour, so it is not guaranteed to truncate
neatly. This was triggered by syzbot on the DEVMAP_HASH type, which
contains the same check, copied from the hashtab code. So apply the same
fix to hashtab, by moving the overflow check to before the roundup.
Fixes: daaf427c6ab3 ("bpf: fix arraymap NULL deref and missing overflow and zero size checks")
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Message-ID: <20240307120340.99577-3-toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 281d464a34f540de166cee74b723e97ac2515ec3 ]
The devmap code allocates a number hash buckets equal to the next power
of two of the max_entries value provided when creating the map. When
rounding up to the next power of two, the 32-bit variable storing the
number of buckets can overflow, and the code checks for overflow by
checking if the truncated 32-bit value is equal to 0. However, on 32-bit
arches the rounding up itself can overflow mid-way through, because it
ends up doing a left-shift of 32 bits on an unsigned long value. If the
size of an unsigned long is four bytes, this is undefined behaviour, so
there is no guarantee that we'll end up with a nice and tidy 0-value at
the end.
Syzbot managed to turn this into a crash on arm32 by creating a
DEVMAP_HASH with max_entries > 0x80000000 and then trying to update it.
Fix this by moving the overflow check to before the rounding up
operation.
Fixes: 6f9d451ab1a3 ("xdp: Add devmap_hash map type for looking up devices by hashed index")
Link: https://lore.kernel.org/r/000000000000ed666a0611af6818@google.com
Reported-and-tested-by: syzbot+8cd36f6b65f3cafd400a@syzkaller.appspotmail.com
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Message-ID: <20240307120340.99577-2-toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 844f157f6c0a905d039d2e20212ab3231f2e5eaf ]
Do not use rlimit-based memory accounting for devmap maps.
It has been replaced with the memcg-based memory accounting.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-23-guro@fb.com
Stable-dep-of: 281d464a34f5 ("bpf: Fix DEVMAP_HASH overflow check on 32-bit arches")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 178c54666f9c4d2f49f2ea661d0c11b52f0ed190 ]
Currently tracing is supposed not to allow for bpf_spin_{lock,unlock}()
helper calls. This is to prevent deadlock for the following cases:
- there is a prog (prog-A) calling bpf_spin_{lock,unlock}().
- there is a tracing program (prog-B), e.g., fentry, attached
to bpf_spin_lock() and/or bpf_spin_unlock().
- prog-B calls bpf_spin_{lock,unlock}().
For such a case, when prog-A calls bpf_spin_{lock,unlock}(),
a deadlock will happen.
The related source codes are below in kernel/bpf/helpers.c:
notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
notrace is supposed to prevent fentry prog from attaching to
bpf_spin_{lock,unlock}().
But actually this is not the case and fentry prog can successfully
attached to bpf_spin_lock(). Siddharth Chintamaneni reported
the issue in [1]. The following is the macro definition for
above BPF_CALL_1:
#define BPF_CALL_x(x, name, ...) \
static __always_inline \
u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
{ \
return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
} \
static __always_inline \
u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__)
The notrace attribute is actually applied to the static always_inline function
____bpf_spin_{lock,unlock}(). The actual callback function
bpf_spin_{lock,unlock}() is not marked with notrace, hence
allowing fentry prog to attach to two helpers, and this
may cause the above mentioned deadlock. Siddharth Chintamaneni
actually has a reproducer in [2].
To fix the issue, a new macro NOTRACE_BPF_CALL_1 is introduced which
will add notrace attribute to the original function instead of
the hidden always_inline function and this fixed the problem.
[1] https://lore.kernel.org/bpf/CAE5sdEigPnoGrzN8WU7Tx-h-iFuMZgW06qp0KHWtpvoXxf1OAQ@mail.gmail.com/
[2] https://lore.kernel.org/bpf/CAE5sdEg6yUc_Jz50AnUXEEUh6O73yQ1Z6NV2srJnef0ZrQkZew@mail.gmail.com/
Fixes: d83525ca62cf ("bpf: introduce bpf_spin_lock")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20240207070102.335167-1-yonghong.song@linux.dev
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c1b3fed319d32a721d4b9c17afaeb430444ff773 ]
Move ____bpf_spin_lock/unlock into helpers to make it more clear
that quadruple underscore bpf_spin_lock/unlock are irqsave/restore variants.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-3-alexei.starovoitov@gmail.com
Stable-dep-of: 178c54666f9c ("bpf: Mark bpf_spin_{lock,unlock}() helpers with notrace correctly")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 14274d0bd31b4debf28284604589f596ad2e99f2 ]
So far, get_device_system_crosststamp() unconditionally passes
system_counterval.cycles to timekeeping_cycles_to_ns(). But when
interpolating system time (do_interp == true), system_counterval.cycles is
before tkr_mono.cycle_last, contrary to the timekeeping_cycles_to_ns()
expectations.
On x86, CONFIG_CLOCKSOURCE_VALIDATE_LAST_CYCLE will mitigate on
interpolating, setting delta to 0. With delta == 0, xtstamp->sys_monoraw
and xtstamp->sys_realtime are then set to the last update time, as
implicitly expected by adjust_historical_crosststamp(). On other
architectures, the resulting nonsense xtstamp->sys_monoraw and
xtstamp->sys_realtime corrupt the xtstamp (ts) adjustment in
adjust_historical_crosststamp().
Fix this by deriving xtstamp->sys_monoraw and xtstamp->sys_realtime from
the last update time when interpolating, by using the local variable
"cycles". The local variable already has the right value when
interpolating, unlike system_counterval.cycles.
Fixes: 2c756feb18d9 ("time: Add history to cross timestamp interface supporting slower devices")
Signed-off-by: Peter Hilber <peter.hilber@opensynergy.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/20231218073849.35294-4-peter.hilber@opensynergy.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 87a41130881995f82f7adbafbfeddaebfb35f0ef ]
The cycle_between() helper checks if parameter test is in the open interval
(before, after). Colloquially speaking, this also applies to the counter
wrap-around special case before > after. get_device_system_crosststamp()
currently uses cycle_between() at the first call site to decide whether to
interpolate for older counter readings.
get_device_system_crosststamp() has the following problem with
cycle_between() testing against an open interval: Assume that, by chance,
cycles == tk->tkr_mono.cycle_last (in the following, "cycle_last" for
brevity). Then, cycle_between() at the first call site, with effective
argument values cycle_between(cycle_last, cycles, now), returns false,
enabling interpolation. During interpolation,
get_device_system_crosststamp() will then call cycle_between() at the
second call site (if a history_begin was supplied). The effective argument
values are cycle_between(history_begin->cycles, cycles, cycles), since
system_counterval.cycles == interval_start == cycles, per the assumption.
Due to the test against the open interval, cycle_between() returns false
again. This causes get_device_system_crosststamp() to return -EINVAL.
This failure should be avoided, since get_device_system_crosststamp() works
both when cycles follows cycle_last (no interpolation), and when cycles
precedes cycle_last (interpolation). For the case cycles == cycle_last,
interpolation is actually unneeded.
Fix this by changing cycle_between() into timestamp_in_interval(), which
now checks against the closed interval, rather than the open interval.
This changes the get_device_system_crosststamp() behavior for three corner
cases:
1. Bypass interpolation in the case cycles == tk->tkr_mono.cycle_last,
fixing the problem described above.
2. At the first timestamp_in_interval() call site, cycles == now no longer
causes failure.
3. At the second timestamp_in_interval() call site, history_begin->cycles
== system_counterval.cycles no longer causes failure.
adjust_historical_crosststamp() also works for this corner case,
where partial_history_cycles == total_history_cycles.
These behavioral changes should not cause any problems.
Fixes: 2c756feb18d9 ("time: Add history to cross timestamp interface supporting slower devices")
Signed-off-by: Peter Hilber <peter.hilber@opensynergy.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20231218073849.35294-3-peter.hilber@opensynergy.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 84dccadd3e2a3f1a373826ad71e5ced5e76b0c00 ]
cycle_between() decides whether get_device_system_crosststamp() will
interpolate for older counter readings.
cycle_between() yields wrong results for a counter wrap-around where after
< before < test, and for the case after < test < before.
Fix the comparison logic.
Fixes: 2c756feb18d9 ("time: Add history to cross timestamp interface supporting slower devices")
Signed-off-by: Peter Hilber <peter.hilber@opensynergy.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/20231218073849.35294-2-peter.hilber@opensynergy.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e6c86c513f440bec5f1046539c7e3c6c653842da ]
As an accident of implementation, an RCU Tasks Trace grace period also
acts as an RCU grace period. However, this could change at any time.
This commit therefore creates an rcu_trace_implies_rcu_gp() that currently
returns true to codify this accident. Code relying on this accident
must call this function to verify that this accident is still happening.
Reported-by: Hou Tao <houtao@huaweicloud.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Link: https://lore.kernel.org/r/20221014113946.965131-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: 876673364161 ("bpf: Defer the free of inner map when necessary")
Signed-off-by: Sasha Levin <sashal@kernel.org>
(cherry picked from commit 10108826191ab30388e8ae9d54505a628f78a7ec)
Signed-off-by: Robert Kolchmeyer <rkolchmeyer@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f7ec1cd5cc7ef3ad964b677ba82b8b77f1c93009 ]
lock_task_sighand() can trigger a hard lockup. If NR_CPUS threads call
getrusage() at the same time and the process has NR_THREADS, spin_lock_irq
will spin with irqs disabled O(NR_CPUS * NR_THREADS) time.
Change getrusage() to use sig->stats_lock, it was specifically designed
for this type of use. This way it runs lockless in the likely case.
TODO:
- Change do_task_stat() to use sig->stats_lock too, then we can
remove spin_lock_irq(siglock) in wait_task_zombie().
- Turn sig->stats_lock into seqcount_rwlock_t, this way the
readers in the slow mode won't exclude each other. See
https://lore.kernel.org/all/20230913154907.GA26210@redhat.com/
- stats_lock has to disable irqs because ->siglock can be taken
in irq context, it would be very nice to change __exit_signal()
to avoid the siglock->stats_lock dependency.
Link: https://lkml.kernel.org/r/20240122155053.GA26214@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Dylan Hatch <dylanbhatch@google.com>
Tested-by: Dylan Hatch <dylanbhatch@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 13b7bc60b5353371460a203df6c38ccd38ad7a3a ]
do/while_each_thread should be avoided when possible.
Plus this change allows to avoid lock_task_sighand(), we can use rcu
and/or sig->stats_lock instead.
Link: https://lkml.kernel.org/r/20230909172629.GA20454@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: f7ec1cd5cc7e ("getrusage: use sig->stats_lock rather than lock_task_sighand()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit daa694e4137571b4ebec330f9a9b4d54aa8b8089 ]
Patch series "getrusage: use sig->stats_lock", v2.
This patch (of 2):
thread_group_cputime() does its own locking, we can safely shift
thread_group_cputime_adjusted() which does another for_each_thread loop
outside of ->siglock protected section.
This is also preparation for the next patch which changes getrusage() to
use stats_lock instead of siglock, thread_group_cputime() takes the same
lock. With the current implementation recursive read_seqbegin_or_lock()
is fine, thread_group_cputime() can't enter the slow mode if the caller
holds stats_lock, yet this looks more safe and better performance-wise.
Link: https://lkml.kernel.org/r/20240122155023.GA26169@redhat.com
Link: https://lkml.kernel.org/r/20240122155050.GA26205@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Dylan Hatch <dylanbhatch@google.com>
Tested-by: Dylan Hatch <dylanbhatch@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2487007aa3b9fafbd2cb14068f49791ce1d7ede5 ]
When running an XDP program that is attached to a cpumap entry, we don't
initialise the xdp_rxq_info data structure being used in the xdp_buff
that backs the XDP program invocation. Tobias noticed that this leads to
random values being returned as the xdp_md->rx_queue_index value for XDP
programs running in a cpumap.
This means we're basically returning the contents of the uninitialised
memory, which is bad. Fix this by zero-initialising the rxq data
structure before running the XDP program.
Fixes: 9216477449f3 ("bpf: cpumap: Add the possibility to attach an eBPF program to cpumap")
Reported-by: Tobias Böhm <tobias@aibor.de>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/20240305213132.11955-1-toke@redhat.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 495ac3069a6235bfdf516812a2a9b256671bbdf9 ]
If seccomp tries to kill a process, it should never see that process
again. To enforce this proactively, switch the mode to something
impossible. If encountered: WARN, reject all syscalls, and attempt to
kill the process again even harder.
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Will Drewry <wad@chromium.org>
Fixes: 8112c4f140fa ("seccomp: remove 2-phase API")
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 079be8fc630943d9fc70a97807feb73d169ee3fc upstream.
The validation of the value written to sched_rt_period_us was broken
because:
- the sysclt_sched_rt_period is declared as unsigned int
- parsed by proc_do_intvec()
- the range is asserted after the value parsed by proc_do_intvec()
Because of this negative values written to the file were written into a
unsigned integer that were later on interpreted as large positive
integers which did passed the check:
if (sysclt_sched_rt_period <= 0)
return EINVAL;
This commit fixes the parsing by setting explicit range for both
perid_us and runtime_us into the sched_rt_sysctls table and processes
the values with proc_dointvec_minmax() instead.
Alternatively if we wanted to use full range of unsigned int for the
period value we would have to split the proc_handler and use
proc_douintvec() for it however even the
Documentation/scheduller/sched-rt-group.rst describes the range as 1 to
INT_MAX.
As far as I can tell the only problem this causes is that the sysctl
file allows writing negative values which when read back may confuse
userspace.
There is also a LTP test being submitted for these sysctl files at:
http://patchwork.ozlabs.org/project/ltp/patch/20230901144433.2526-1-chrubis@suse.cz/
Signed-off-by: Cyril Hrubis <chrubis@suse.cz>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231002115553.3007-2-chrubis@suse.cz
[ pvorel: rebased for 5.15, 5.10 ]
Reviewed-by: Petr Vorel <pvorel@suse.cz>
Signed-off-by: Petr Vorel <pvorel@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c7fcb99877f9f542c918509b2801065adcaf46fa upstream.
There is a 10% rounding error in the intial value of the
sysctl_sched_rr_timeslice with CONFIG_HZ_300=y.
This was found with LTP test sched_rr_get_interval01:
sched_rr_get_interval01.c:57: TPASS: sched_rr_get_interval() passed
sched_rr_get_interval01.c:64: TPASS: Time quantum 0s 99999990ns
sched_rr_get_interval01.c:72: TFAIL: /proc/sys/kernel/sched_rr_timeslice_ms != 100 got 90
sched_rr_get_interval01.c:57: TPASS: sched_rr_get_interval() passed
sched_rr_get_interval01.c:64: TPASS: Time quantum 0s 99999990ns
sched_rr_get_interval01.c:72: TFAIL: /proc/sys/kernel/sched_rr_timeslice_ms != 100 got 90
What this test does is to compare the return value from the
sched_rr_get_interval() and the sched_rr_timeslice_ms sysctl file and
fails if they do not match.
The problem it found is the intial sysctl file value which was computed as:
static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
which works fine as long as MSEC_PER_SEC is multiple of HZ, however it
introduces 10% rounding error for CONFIG_HZ_300:
(MSEC_PER_SEC / HZ) * (100 * HZ / 1000)
(1000 / 300) * (100 * 300 / 1000)
3 * 30 = 90
This can be easily fixed by reversing the order of the multiplication
and division. After this fix we get:
(MSEC_PER_SEC * (100 * HZ / 1000)) / HZ
(1000 * (100 * 300 / 1000)) / 300
(1000 * 30) / 300 = 100
Fixes: 975e155ed873 ("sched/rt: Show the 'sched_rr_timeslice' SCHED_RR timeslice tuning knob in milliseconds")
Signed-off-by: Cyril Hrubis <chrubis@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Petr Vorel <pvorel@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Petr Vorel <pvorel@suse.cz>
Link: https://lore.kernel.org/r/20230802151906.25258-2-chrubis@suse.cz
[ pvorel: rebased for 5.15, 5.10 ]
Signed-off-by: Petr Vorel <pvorel@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c1fc6484e1fb7cc2481d169bfef129a1b0676abe upstream.
The sched_rr_timeslice can be reset to default by writing value that is
<= 0. However after reading from this file we always got the last value
written, which is not useful at all.
$ echo -1 > /proc/sys/kernel/sched_rr_timeslice_ms
$ cat /proc/sys/kernel/sched_rr_timeslice_ms
-1
Fix this by setting the variable that holds the sysctl file value to the
jiffies_to_msecs(RR_TIMESLICE) in case that <= 0 value was written.
Signed-off-by: Cyril Hrubis <chrubis@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Petr Vorel <pvorel@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Petr Vorel <pvorel@suse.cz>
Cc: Mahmoud Adam <mngyadam@amazon.com>
Link: https://lore.kernel.org/r/20230802151906.25258-3-chrubis@suse.cz
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 944d5fe50f3f03daacfea16300e656a1691c4a23 upstream.
On some systems, sys_membarrier can be very expensive, causing overall
slowdowns for everything. So put a lock on the path in order to
serialize the accesses to prevent the ability for this to be called at
too high of a frequency and saturate the machine.
Reviewed-and-tested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Borislav Petkov <bp@alien8.de>
Fixes: 22e4ebb97582 ("membarrier: Provide expedited private command")
Fixes: c5f58bd58f43 ("membarrier: Provide GLOBAL_EXPEDITED command")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[ converted to explicit mutex_*() calls - cleanup.h is not in this stable
branch - gregkh ]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0c52310f260014d95c1310364379772cb74cf82d upstream.
While in theory the timer can be triggered before expires + delta, for the
cases of RT tasks they really have no business giving any lenience for
extra slack time, so override any passed value by the user and always use
zero for schedule_hrtimeout_range() calls. Furthermore, this is similar to
what the nanosleep(2) family already does with current->timer_slack_ns.
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230123173206.6764-3-dave@stgolabs.net
Signed-off-by: Felix Moessbauer <felix.moessbauer@siemens.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 66bbea9ed6446b8471d365a22734dc00556c4785 upstream.
The return type for ring_buffer_poll_wait() is __poll_t. This is behind
the scenes an unsigned where we can set event bits. In case of a
non-allocated CPU, we do return instead -EINVAL (0xffffffea). Lucky us,
this ends up setting few error bits (EPOLLERR | EPOLLHUP | EPOLLNVAL), so
user-space at least is aware something went wrong.
Nonetheless, this is an incorrect code. Replace that -EINVAL with a
proper EPOLLERR to clean that output. As this doesn't change the
behaviour, there's no need to treat this change as a bug fix.
Link: https://lore.kernel.org/linux-trace-kernel/20240131140955.3322792-1-vdonnefort@google.com
Cc: stable@vger.kernel.org
Fixes: 6721cb6002262 ("ring-buffer: Do not poll non allocated cpu buffers")
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 44dc5c41b5b1267d4dd037d26afc0c4d3a568acb upstream.
While looking at improving the saved_cmdlines cache I found a huge amount
of wasted memory that should be used for the cmdlines.
The tracing data saves pids during the trace. At sched switch, if a trace
occurred, it will save the comm of the task that did the trace. This is
saved in a "cache" that maps pids to comms and exposed to user space via
the /sys/kernel/tracing/saved_cmdlines file. Currently it only caches by
default 128 comms.
The structure that uses this creates an array to store the pids using
PID_MAX_DEFAULT (which is usually set to 32768). This causes the structure
to be of the size of 131104 bytes on 64 bit machines.
In hex: 131104 = 0x20020, and since the kernel allocates generic memory in
powers of two, the kernel would allocate 0x40000 or 262144 bytes to store
this structure. That leaves 131040 bytes of wasted space.
Worse, the structure points to an allocated array to store the comm names,
which is 16 bytes times the amount of names to save (currently 128), which
is 2048 bytes. Instead of allocating a separate array, make the structure
end with a variable length string and use the extra space for that.
This is similar to a recommendation that Linus had made about eventfs_inode names:
https://lore.kernel.org/all/20240130190355.11486-5-torvalds@linux-foundation.org/
Instead of allocating a separate string array to hold the saved comms,
have the structure end with: char saved_cmdlines[]; and round up to the
next power of two over sizeof(struct saved_cmdline_buffers) + num_cmdlines * TASK_COMM_LEN
It will use this extra space for the saved_cmdline portion.
Now, instead of saving only 128 comms by default, by using this wasted
space at the end of the structure it can save over 8000 comms and even
saves space by removing the need for allocating the other array.
Link: https://lore.kernel.org/linux-trace-kernel/20240209063622.1f7b6d5f@rorschach.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes: 939c7a4f04fcd ("tracing: Introduce saved_cmdlines_size file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0958b33ef5a04ed91f61cef4760ac412080c4e08 upstream.
Fix register_snapshot_trigger() to return error code if it failed to
allocate a snapshot instead of 0 (success). Unless that, it will register
snapshot trigger without an error.
Link: https://lore.kernel.org/linux-trace-kernel/170622977792.270660.2789298642759362200.stgit@devnote2
Fixes: 0bbe7f719985 ("tracing: Fix the race between registering 'snapshot' event trigger and triggering 'snapshot' operation")
Cc: stable@vger.kernel.org
Cc: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 388a1fb7da6aaa1970c7e2a7d7fcd983a87a8484 ]
Thomas reported that commit 652ffc2104ec ("perf/core: Fix narrow
startup race when creating the perf nr_addr_filters sysfs file") made
the entire attribute group vanish, instead of only the nr_addr_filters
attribute.
Additionally a stray return.
Insufficient coffee was involved with both writing and merging the
patch.
Fixes: 652ffc2104ec ("perf/core: Fix narrow startup race when creating the perf nr_addr_filters sysfs file")
Reported-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Thomas Richter <tmricht@linux.ibm.com>
Link: https://lkml.kernel.org/r/20231122100756.GP8262@noisy.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 06e5c999f10269a532304e89a6adb2fbfeb0593c ]
generic_map_{delete,update}_batch() doesn't set uattr->batch.count as
zero before it tries to allocate memory for key. If the memory
allocation fails, the value of uattr->batch.count will be incorrect.
Fix it by setting uattr->batch.count as zero beore batched update or
deletion.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231208102355.2628918-6-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 20c20bd11a0702ce4dc9300c3da58acf551d9725 ]
map is the pointer of outer map, and need_defer needs some explanation.
need_defer tells the implementation to defer the reference release of
the passed element and ensure that the element is still alive before
the bpf program, which may manipulate it, exits.
The following three cases will invoke map_fd_put_ptr() and different
need_defer values will be passed to these callers:
1) release the reference of the old element in the map during map update
or map deletion. The release must be deferred, otherwise the bpf
program may incur use-after-free problem, so need_defer needs to be
true.
2) release the reference of the to-be-added element in the error path of
map update. The to-be-added element is not visible to any bpf
program, so it is OK to pass false for need_defer parameter.
3) release the references of all elements in the map during map release.
Any bpf program which has access to the map must have been exited and
released, so need_defer=false will be OK.
These two parameters will be used by the following patches to fix the
potential use-after-free problem for map-in-map.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 022732e3d846e197539712e51ecada90ded0572a ]
When auditd_set sets the auditd_conn pointer, audit messages can
immediately be put on the socket by other kernel threads. If the backlog
is large or the rate is high, this can immediately fill the socket
buffer. If the audit daemon requested an ACK for this operation, a full
socket buffer causes the ACK to get dropped, also setting ENOBUFS on the
socket.
To avoid this race and ensure ACKs get through, fast-track the ACK in
this specific case to ensure it is sent before auditd_conn is set.
Signed-off-by: Chris Riches <chris.riches@nutanix.com>
[PM: fix some tab vs space damage]
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 9a574ea9069be30b835a3da772c039993c43369b upstream.
Commit 71fee48f ("tick-sched: Fix idle and iowait sleeptime accounting vs
CPU hotplug") preserved total idle sleep time and iowait sleeptime across
CPU hotplug events.
Similar reasoning applies to the number of idle calls and idle sleeps to
get the proper average of sleep time per idle invocation.
Preserve those fields too.
Fixes: 71fee48f ("tick-sched: Fix idle and iowait sleeptime accounting vs CPU hotplug")
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240122233534.3094238-1-tim.c.chen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 2b44760609e9eaafc9d234a6883d042fc21132a7 ]
Running the following two commands in parallel on a multi-processor
AArch64 machine can sporadically produce an unexpected warning about
duplicate histogram entries:
$ while true; do
echo hist:key=id.syscall:val=hitcount > \
/sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger
cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist
sleep 0.001
done
$ stress-ng --sysbadaddr $(nproc)
The warning looks as follows:
[ 2911.172474] ------------[ cut here ]------------
[ 2911.173111] Duplicates detected: 1
[ 2911.173574] WARNING: CPU: 2 PID: 12247 at kernel/trace/tracing_map.c:983 tracing_map_sort_entries+0x3e0/0x408
[ 2911.174702] Modules linked in: iscsi_ibft(E) iscsi_boot_sysfs(E) rfkill(E) af_packet(E) nls_iso8859_1(E) nls_cp437(E) vfat(E) fat(E) ena(E) tiny_power_button(E) qemu_fw_cfg(E) button(E) fuse(E) efi_pstore(E) ip_tables(E) x_tables(E) xfs(E) libcrc32c(E) aes_ce_blk(E) aes_ce_cipher(E) crct10dif_ce(E) polyval_ce(E) polyval_generic(E) ghash_ce(E) gf128mul(E) sm4_ce_gcm(E) sm4_ce_ccm(E) sm4_ce(E) sm4_ce_cipher(E) sm4(E) sm3_ce(E) sm3(E) sha3_ce(E) sha512_ce(E) sha512_arm64(E) sha2_ce(E) sha256_arm64(E) nvme(E) sha1_ce(E) nvme_core(E) nvme_auth(E) t10_pi(E) sg(E) scsi_mod(E) scsi_common(E) efivarfs(E)
[ 2911.174738] Unloaded tainted modules: cppc_cpufreq(E):1
[ 2911.180985] CPU: 2 PID: 12247 Comm: cat Kdump: loaded Tainted: G E 6.7.0-default #2 1b58bbb22c97e4399dc09f92d309344f69c44a01
[ 2911.182398] Hardware name: Amazon EC2 c7g.8xlarge/, BIOS 1.0 11/1/2018
[ 2911.183208] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 2911.184038] pc : tracing_map_sort_entries+0x3e0/0x408
[ 2911.184667] lr : tracing_map_sort_entries+0x3e0/0x408
[ 2911.185310] sp : ffff8000a1513900
[ 2911.185750] x29: ffff8000a1513900 x28: ffff0003f272fe80 x27: 0000000000000001
[ 2911.186600] x26: ffff0003f272fe80 x25: 0000000000000030 x24: 0000000000000008
[ 2911.187458] x23: ffff0003c5788000 x22: ffff0003c16710c8 x21: ffff80008017f180
[ 2911.188310] x20: ffff80008017f000 x19: ffff80008017f180 x18: ffffffffffffffff
[ 2911.189160] x17: 0000000000000000 x16: 0000000000000000 x15: ffff8000a15134b8
[ 2911.190015] x14: 0000000000000000 x13: 205d373432323154 x12: 5b5d313131333731
[ 2911.190844] x11: 00000000fffeffff x10: 00000000fffeffff x9 : ffffd1b78274a13c
[ 2911.191716] x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 000000000057ffa8
[ 2911.192554] x5 : ffff0012f6c24ec0 x4 : 0000000000000000 x3 : ffff2e5b72b5d000
[ 2911.193404] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0003ff254480
[ 2911.194259] Call trace:
[ 2911.194626] tracing_map_sort_entries+0x3e0/0x408
[ 2911.195220] hist_show+0x124/0x800
[ 2911.195692] seq_read_iter+0x1d4/0x4e8
[ 2911.196193] seq_read+0xe8/0x138
[ 2911.196638] vfs_read+0xc8/0x300
[ 2911.197078] ksys_read+0x70/0x108
[ 2911.197534] __arm64_sys_read+0x24/0x38
[ 2911.198046] invoke_syscall+0x78/0x108
[ 2911.198553] el0_svc_common.constprop.0+0xd0/0xf8
[ 2911.199157] do_el0_svc+0x28/0x40
[ 2911.199613] el0_svc+0x40/0x178
[ 2911.200048] el0t_64_sync_handler+0x13c/0x158
[ 2911.200621] el0t_64_sync+0x1a8/0x1b0
[ 2911.201115] ---[ end trace 0000000000000000 ]---
The problem appears to be caused by CPU reordering of writes issued from
__tracing_map_insert().
The check for the presence of an element with a given key in this
function is:
val = READ_ONCE(entry->val);
if (val && keys_match(key, val->key, map->key_size)) ...
The write of a new entry is:
elt = get_free_elt(map);
memcpy(elt->key, key, map->key_size);
entry->val = elt;
The "memcpy(elt->key, key, map->key_size);" and "entry->val = elt;"
stores may become visible in the reversed order on another CPU. This
second CPU might then incorrectly determine that a new key doesn't match
an already present val->key and subsequently insert a new element,
resulting in a duplicate.
Fix the problem by adding a write barrier between
"memcpy(elt->key, key, map->key_size);" and "entry->val = elt;", and for
good measure, also use WRITE_ONCE(entry->val, elt) for publishing the
element. The sequence pairs with the mentioned "READ_ONCE(entry->val);"
and the "val->key" check which has an address dependency.
The barrier is placed on a path executed when adding an element for
a new key. Subsequent updates targeting the same key remain unaffected.
From the user's perspective, the issue was introduced by commit
c193707dde77 ("tracing: Remove code which merges duplicates"), which
followed commit cbf4100efb8f ("tracing: Add support to detect and avoid
duplicates"). The previous code operated differently; it inherently
expected potential races which result in duplicates but merged them
later when they occurred.
Link: https://lore.kernel.org/linux-trace-kernel/20240122150928.27725-1-petr.pavlu@suse.com
Fixes: c193707dde77 ("tracing: Remove code which merges duplicates")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Acked-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 7d4b5d7a37bdd63a5a3371b988744b060d5bb86f upstream.
In preparation for subsequent changes, introduce a specialized variant
of async_schedule_dev() that will not invoke the argument function
synchronously when it cannot be scheduled for asynchronous execution.
The new function, async_schedule_dev_nocall(), will be used for fixing
possible deadlocks in the system-wide power management core code.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Stanislaw Gruszka <stanislaw.gruszka@linux.intel.com> for the series.
Tested-by: Youngmin Nam <youngmin.nam@samsung.com>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6aa09a5bccd8e224d917afdb4c278fc66aacde4d upstream.
In preparation for subsequent changes, split async_schedule_node_domain()
in two pieces so as to allow the bottom part of it to be called from a
somewhat different code path.
No functional impact.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Stanislaw Gruszka <stanislaw.gruszka@linux.intel.com>
Tested-by: Youngmin Nam <youngmin.nam@samsung.com>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 71cd7e80cfde548959952eac7063aeaea1f2e1c6 upstream.
An S4 (suspend to disk) test on the LoongArch 3A6000 platform sometimes
fails with the following error messaged in the dmesg log:
Invalid LZO compressed length
That happens because when compressing/decompressing the image, the
synchronization between the control thread and the compress/decompress/crc
thread is based on a relaxed ordering interface, which is unreliable, and the
following situation may occur:
CPU 0 CPU 1
save_image_lzo lzo_compress_threadfn
atomic_set(&d->stop, 1);
atomic_read(&data[thr].stop)
data[thr].cmp = data[thr].cmp_len;
WRITE data[thr].cmp_len
Then CPU0 gets a stale cmp_len and writes it to disk. During resume from S4,
wrong cmp_len is loaded.
To maintain data consistency between the two threads, use the acquire/release
variants of atomic set and read operations.
Fixes: 081a9d043c98 ("PM / Hibernate: Improve performance of LZO/plain hibernation, checksum image")
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Hongchen Zhang <zhanghongchen@loongson.cn>
Co-developed-by: Weihao Li <liweihao@loongson.cn>
Signed-off-by: Weihao Li <liweihao@loongson.cn>
[ rjw: Subject rewrite and changelog edits ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 4f41d30cd6dc865c3cbc1a852372321eba6d4e4c ]
When appending "[defcmd]" to 'kdb_prompt_str', the size of the string
already in the buffer should be taken into account.
An option could be to switch from strncat() to strlcat() which does the
correct test to avoid such an overflow.
However, this actually looks as dead code, because 'defcmd_in_progress'
can't be true here.
See a more detailed explanation at [1].
[1]: https://lore.kernel.org/all/CAD=FV=WSh7wKN7Yp-3wWiDgX4E3isQ8uh0LCzTmd1v9Cg9j+nQ@mail.gmail.com/
Fixes: 5d5314d6795f ("kdb: core for kgdb back end (1 of 2)")
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 71fee48fb772ac4f6cfa63dbebc5629de8b4cc09 upstream.
When offlining and onlining CPUs the overall reported idle and iowait
times as reported by /proc/stat jump backward and forward:
cpu 132 0 176 225249 47 6 6 21 0 0
cpu0 80 0 115 112575 33 3 4 18 0 0
cpu1 52 0 60 112673 13 3 1 2 0 0
cpu 133 0 177 226681 47 6 6 21 0 0
cpu0 80 0 116 113387 33 3 4 18 0 0
cpu 133 0 178 114431 33 6 6 21 0 0 <---- jump backward
cpu0 80 0 116 114247 33 3 4 18 0 0
cpu1 52 0 61 183 0 3 1 2 0 0 <---- idle + iowait start with 0
cpu 133 0 178 228956 47 6 6 21 0 0 <---- jump forward
cpu0 81 0 117 114929 33 3 4 18 0 0
Reason for this is that get_idle_time() in fs/proc/stat.c has different
sources for both values depending on if a CPU is online or offline:
- if a CPU is online the values may be taken from its per cpu
tick_cpu_sched structure
- if a CPU is offline the values are taken from its per cpu cpustat
structure
The problem is that the per cpu tick_cpu_sched structure is set to zero on
CPU offline. See tick_cancel_sched_timer() in kernel/time/tick-sched.c.
Therefore when a CPU is brought offline and online afterwards both its idle
and iowait sleeptime will be zero, causing a jump backward in total system
idle and iowait sleeptime. In a similar way if a CPU is then brought
offline again the total idle and iowait sleeptimes will jump forward.
It looks like this behavior was introduced with commit 4b0c0f294f60
("tick: Cleanup NOHZ per cpu data on cpu down").
This was only noticed now on s390, since we switched to generic idle time
reporting with commit be76ea614460 ("s390/idle: remove arch_cpu_idle_time()
and corresponding code").
Fix this by preserving the values of idle_sleeptime and iowait_sleeptime
members of the per-cpu tick_sched structure on CPU hotplug.
Fixes: 4b0c0f294f60 ("tick: Cleanup NOHZ per cpu data on cpu down")
Reported-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240115163555.1004144-1-hca@linux.ibm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4fbd2f83fda0ca44a2ec6421ca3508b355b31858 upstream.
Since forcibly unoptimized kprobes will be put on the freeing_list directly
in the unoptimize_kprobe(), do_unoptimize_kprobes() must continue to check
the freeing_list even if unoptimizing_list is empty.
This bug can happen if a kprobe is put in an instruction which is in the
middle of the jump-replaced instruction sequence of an optprobe, *and* the
optprobe is recently unregistered and queued on unoptimizing_list.
In this case, the optprobe will be unoptimized forcibly (means immediately)
and put it into the freeing_list, expecting the optprobe will be handled in
do_unoptimize_kprobe().
But if there is no other optprobes on the unoptimizing_list, current code
returns from the do_unoptimize_kprobe() soon and does not handle the
optprobe which is on the freeing_list. Then the optprobe will hit the
WARN_ON_ONCE() in the do_free_cleaned_kprobes(), because it is not handled
in the latter loop of the do_unoptimize_kprobe().
To solve this issue, do not return from do_unoptimize_kprobes() immediately
even if unoptimizing_list is empty.
Moreover, this change affects another case. kill_optimized_kprobes() expects
kprobe_optimizer() will just free the optprobe on freeing_list.
So I changed it to just do list_move() to freeing_list if optprobes are on
unoptimizing list. And the do_unoptimize_kprobe() will skip
arch_disarm_kprobe() if the probe on freeing_list has gone flag.
Link: https://lore.kernel.org/all/Y8URdIfVr3pq2X8w@xpf.sh.intel.com/
Link: https://lore.kernel.org/all/167448024501.3253718.13037333683110512967.stgit@devnote3/
Fixes: e4add247789e ("kprobes: Fix optimize_kprobe()/unoptimize_kprobe() cancellation logic")
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: stable@vger.kernel.org
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
[fp: adjust comment conflict regarding commit 223a76b268c9 ("kprobes: Fix
coding style issues")]
Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b07bc2347672cc8c7293c64499f1488278c5ca3d ]
Reproduced with below sequence:
dma_declare_coherent_memory()->dma_release_coherent_memory()
->dma_declare_coherent_memory()->"return -EBUSY" error
It will return -EBUSY from the dma_assign_coherent_memory()
in dma_declare_coherent_memory(), the reason is that dev->dma_mem
pointer has not been set to NULL after it's freed.
Fixes: cf65a0f6f6ff ("dma-mapping: move all DMA mapping code to kernel/dma")
Signed-off-by: Joakim Zhang <joakim.zhang@cixtech.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a833a17aeac73b33f79433d7cee68d5cafd71e4f ]
This patch fixes a bug around the verification of possibly-zero-sized
stack accesses. When the access was done through a var-offset stack
pointer, check_stack_access_within_bounds was incorrectly computing the
maximum-offset of a zero-sized read to be the same as the register's min
offset. Instead, we have to take in account the register's maximum
possible value. The patch also simplifies how the max offset is checked;
the check is now simpler than for min offset.
The bug was allowing accesses to erroneously pass the
check_stack_access_within_bounds() checks, only to later crash in
check_stack_range_initialized() when all the possibly-affected stack
slots are iterated (this time with a correct max offset).
check_stack_range_initialized() is relying on
check_stack_access_within_bounds() for its accesses to the
stack-tracking vector to be within bounds; in the case of zero-sized
accesses, we were essentially only verifying that the lowest possible
slot was within bounds. We would crash when the max-offset of the stack
pointer was >= 0 (which shouldn't pass verification, and hopefully is
not something anyone's code attempts to do in practice).
Thanks Hao for reporting!
Fixes: 01f810ace9ed3 ("bpf: Allow variable-offset stack access")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231207041150.229139-2-andreimatei1@gmail.com
Closes: https://lore.kernel.org/bpf/CACkBjsZGEUaRCHsmaX=h-efVogsRfK1FPxmkgb0Os_frnHiNdw@mail.gmail.com/
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ab125ed3ec1c10ccc36bc98c7a4256ad114a3dae ]
When register is spilled onto a stack as a 1/2/4-byte register, we set
slot_type[BPF_REG_SIZE - 1] (plus potentially few more below it,
depending on actual spill size). So to check if some stack slot has
spilled register we need to consult slot_type[7], not slot_type[0].
To avoid the need to remember and double-check this in the future, just
use is_spilled_reg() helper.
Fixes: 27113c59b6d0 ("bpf: Check the other end of slot_type for STACK_SPILL")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231205184248.1502704-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b8e3a87a627b575896e448021e5c2f8a3bc19931 ]
Currently get_perf_callchain only supports user stack walking for
the current task. Passing the correct *crosstask* param will return
0 frames if the task passed to __bpf_get_stack isn't the current
one instead of a single incorrect frame/address. This change
passes the correct *crosstask* param but also does a preemptive
check in __bpf_get_stack if the task is current and returns
-EOPNOTSUPP if it is not.
This issue was found using bpf_get_task_stack inside a BPF
iterator ("iter/task"), which iterates over all tasks.
bpf_get_task_stack works fine for fetching kernel stacks
but because get_perf_callchain relies on the caller to know
if the requested *task* is the current one (via *crosstask*)
it was failing in a confusing way.
It might be possible to get user stacks for all tasks utilizing
something like access_process_vm but that requires the bpf
program calling bpf_get_task_stack to be sleepable and would
therefore be a breaking change.
Fixes: fa28dcb82a38 ("bpf: Introduce helper bpf_get_task_stack()")
Signed-off-by: Jordan Rome <jordalgo@meta.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231108112334.3433136-1-jordalgo@meta.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9b75dbeb36fcd9fc7ed51d370310d0518a387769 ]
When looking up an element in LPM trie, the condition 'matchlen ==
trie->max_prefixlen' will never return true, if key->prefixlen is larger
than trie->max_prefixlen. Consequently all elements in the LPM trie will
be visited and no element is returned in the end.
To resolve this, check key->prefixlen first before walking the LPM trie.
Fixes: b95a5c4db09b ("bpf: add a longest prefix match trie map implementation")
Signed-off-by: Florian Lehner <dev@der-flo.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231105085801.3742-1-dev@der-flo.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 712292308af2265cd9b126aedfa987f10f452a33 ]
As the ring buffer recording requires cmpxchg() to work, if the
architecture does not support cmpxchg in NMI, then do not do any recording
within an NMI.
Link: https://lore.kernel.org/linux-trace-kernel/20231213175403.6fc18540@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 60be76eeabb3d83858cc6577fc65c7d0f36ffd42 ]
If for some reason the trace_marker write does not have a nul byte for the
string, it will overflow the print:
trace_seq_printf(s, ": %s", field->buf);
The field->buf could be missing the nul byte. To prevent overflow, add the
max size that the buf can be by using the event size and the field
location.
int max = iter->ent_size - offsetof(struct print_entry, buf);
trace_seq_printf(s, ": %*.s", max, field->buf);
Link: https://lore.kernel.org/linux-trace-kernel/20231212084444.4619b8ce@gandalf.local.home
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 39a7dc23a1ed0fe81141792a09449d124c5953bd upstream.
If an application blocks on the snapshot or snapshot_raw files, expecting
to be woken up when a snapshot occurs, it will not happen. Or it may
happen with an unexpected result.
That result is that the application will be reading the main buffer
instead of the snapshot buffer. That is because when the snapshot occurs,
the main and snapshot buffers are swapped. But the reader has a descriptor
still pointing to the buffer that it originally connected to.
This is fine for the main buffer readers, as they may be blocked waiting
for a watermark to be hit, and when a snapshot occurs, the data that the
main readers want is now on the snapshot buffer.
But for waiters of the snapshot buffer, they are waiting for an event to
occur that will trigger the snapshot and they can then consume it quickly
to save the snapshot before the next snapshot occurs. But to do this, they
need to read the new snapshot buffer, not the old one that is now
receiving new data.
Also, it does not make sense to have a watermark "buffer_percent" on the
snapshot buffer, as the snapshot buffer is static and does not receive new
data except all at once.
Link: https://lore.kernel.org/linux-trace-kernel/20231228095149.77f5b45d@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes: debdd57f5145f ("tracing: Make a snapshot feature available from userspace")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 623b1f896fa8a669a277ee5a258307a16c7377a3 upstream.
The tracefs file "buffer_percent" is to allow user space to set a
water-mark on how much of the tracing ring buffer needs to be filled in
order to wake up a blocked reader.
0 - is to wait until any data is in the buffer
1 - is to wait for 1% of the sub buffers to be filled
50 - would be half of the sub buffers are filled with data
100 - is not to wake the waiter until the ring buffer is completely full
Unfortunately the test for being full was:
dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
return (dirty * 100) > (full * nr_pages);
Where "full" is the value for "buffer_percent".
There is two issues with the above when full == 100.
1. dirty * 100 > 100 * nr_pages will never be true
That is, the above is basically saying that if the user sets
buffer_percent to 100, more pages need to be dirty than exist in the
ring buffer!
2. The page that the writer is on is never considered dirty, as dirty
pages are only those that are full. When the writer goes to a new
sub-buffer, it clears the contents of that sub-buffer.
That is, even if the check was ">=" it would still not be equal as the
most pages that can be considered "dirty" is nr_pages - 1.
To fix this, add one to dirty and use ">=" in the compare.
Link: https://lore.kernel.org/linux-trace-kernel/20231226125902.4a057f1d@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes: 03329f9939781 ("tracing: Add tracefs file buffer_percentage")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 88b30c7f5d27e1594d70dc2bd7199b18f2b57fa9 upstream.
The synth_event_gen_test module can be built in, if someone wants to run
the tests at boot up and not have to load them.
The synth_event_gen_test_init() function creates and enables the synthetic
events and runs its tests.
The synth_event_gen_test_exit() disables the events it created and
destroys the events.
If the module is builtin, the events are never disabled. The issue is, the
events should be disable after the tests are run. This could be an issue
if the rest of the boot up tests are enabled, as they expect the events to
be in a known state before testing. That known state happens to be
disabled.
When CONFIG_SYNTH_EVENT_GEN_TEST=y and CONFIG_EVENT_TRACE_STARTUP_TEST=y
a warning will trigger:
Running tests on trace events:
Testing event create_synth_test:
Enabled event during self test!
------------[ cut here ]------------
WARNING: CPU: 2 PID: 1 at kernel/trace/trace_events.c:4150 event_trace_self_tests+0x1c2/0x480
Modules linked in:
CPU: 2 PID: 1 Comm: swapper/0 Not tainted 6.7.0-rc2-test-00031-gb803d7c664d5-dirty #276
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:event_trace_self_tests+0x1c2/0x480
Code: bb e8 a2 ab 5d fc 48 8d 7b 48 e8 f9 3d 99 fc 48 8b 73 48 40 f6 c6 01 0f 84 d6 fe ff ff 48 c7 c7 20 b6 ad bb e8 7f ab 5d fc 90 <0f> 0b 90 48 89 df e8 d3 3d 99 fc 48 8b 1b 4c 39 f3 0f 85 2c ff ff
RSP: 0000:ffffc9000001fdc0 EFLAGS: 00010246
RAX: 0000000000000029 RBX: ffff88810399ca80 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffffb9f19478 RDI: ffff88823c734e64
RBP: ffff88810399f300 R08: 0000000000000000 R09: fffffbfff79eb32a
R10: ffffffffbcf59957 R11: 0000000000000001 R12: ffff888104068090
R13: ffffffffbc89f0a0 R14: ffffffffbc8a0f08 R15: 0000000000000078
FS: 0000000000000000(0000) GS:ffff88823c700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000001f6282001 CR4: 0000000000170ef0
Call Trace:
<TASK>
? __warn+0xa5/0x200
? event_trace_self_tests+0x1c2/0x480
? report_bug+0x1f6/0x220
? handle_bug+0x6f/0x90
? exc_invalid_op+0x17/0x50
? asm_exc_invalid_op+0x1a/0x20
? tracer_preempt_on+0x78/0x1c0
? event_trace_self_tests+0x1c2/0x480
? __pfx_event_trace_self_tests_init+0x10/0x10
event_trace_self_tests_init+0x27/0xe0
do_one_initcall+0xd6/0x3c0
? __pfx_do_one_initcall+0x10/0x10
? kasan_set_track+0x25/0x30
? rcu_is_watching+0x38/0x60
kernel_init_freeable+0x324/0x450
? __pfx_kernel_init+0x10/0x10
kernel_init+0x1f/0x1e0
? _raw_spin_unlock_irq+0x33/0x50
ret_from_fork+0x34/0x60
? __pfx_kernel_init+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
This is because the synth_event_gen_test_init() left the synthetic events
that it created enabled. By having it disable them after testing, the
other selftests will run fine.
Link: https://lore.kernel.org/linux-trace-kernel/20231220111525.2f0f49b0@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 9fe41efaca084 ("tracing: Add synth event generation test module")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reported-by: Alexander Graf <graf@amazon.com>
Tested-by: Alexander Graf <graf@amazon.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fff88fa0fbc7067ba46dde570912d63da42c59a9 upstream.
Mathieu Desnoyers pointed out an issue in the rb_time_cmpxchg() for 32 bit
architectures. That is:
static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
{
unsigned long cnt, top, bottom, msb;
unsigned long cnt2, top2, bottom2, msb2;
u64 val;
/* The cmpxchg always fails if it interrupted an update */
if (!__rb_time_read(t, &val, &cnt2))
return false;
if (val != expect)
return false;
<<<< interrupted here!
cnt = local_read(&t->cnt);
The problem is that the synchronization counter in the rb_time_t is read
*after* the value of the timestamp is read. That means if an interrupt
were to come in between the value being read and the counter being read,
it can change the value and the counter and the interrupted process would
be clueless about it!
The counter needs to be read first and then the value. That way it is easy
to tell if the value is stale or not. If the counter hasn't been updated,
then the value is still good.
Link: https://lore.kernel.org/linux-trace-kernel/20231211201324.652870-1-mathieu.desnoyers@efficios.com/
Link: https://lore.kernel.org/linux-trace-kernel/20231212115301.7a9c9a64@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Fixes: 10464b4aa605e ("ring-buffer: Add rb_time_t 64 bit operations for speeding up 32 bit")
Reported-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b3ae7b67b87fed771fa5bf95389df06b0433603e upstream.
The maximum ring buffer data size is the maximum size of data that can be
recorded on the ring buffer. Events must be smaller than the sub buffer
data size minus any meta data. This size is checked before trying to
allocate from the ring buffer because the allocation assumes that the size
will fit on the sub buffer.
The maximum size was calculated as the size of a sub buffer page (which is
currently PAGE_SIZE minus the sub buffer header) minus the size of the
meta data of an individual event. But it missed the possible adding of a
time stamp for events that are added long enough apart that the event meta
data can't hold the time delta.
When an event is added that is greater than the current BUF_MAX_DATA_SIZE
minus the size of a time stamp, but still less than or equal to
BUF_MAX_DATA_SIZE, the ring buffer would go into an infinite loop, looking
for a page that can hold the event. Luckily, there's a check for this loop
and after 1000 iterations and a warning is emitted and the ring buffer is
disabled. But this should never happen.
This can happen when a large event is added first, or after a long period
where an absolute timestamp is prefixed to the event, increasing its size
by 8 bytes. This passes the check and then goes into the algorithm that
causes the infinite loop.
For events that are the first event on the sub-buffer, it does not need to
add a timestamp, because the sub-buffer itself contains an absolute
timestamp, and adding one is redundant.
The fix is to check if the event is to be the first event on the
sub-buffer, and if it is, then do not add a timestamp.
This also fixes 32 bit adding a timestamp when a read of before_stamp or
write_stamp is interrupted. There's still no need to add that timestamp if
the event is going to be the first event on the sub buffer.
Also, if the buffer has "time_stamp_abs" set, then also check if the
length plus the timestamp is greater than the BUF_MAX_DATA_SIZE.
Link: https://lore.kernel.org/all/20231212104549.58863438@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20231212071837.5fdd6c13@gandalf.local.home
Link: https://lore.kernel.org/linux-trace-kernel/20231212111617.39e02849@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: a4543a2fa9ef3 ("ring-buffer: Get timestamp after event is allocated")
Fixes: 58fbc3c63275c ("ring-buffer: Consolidate add_timestamp to remove some branches")
Reported-by: Kent Overstreet <kent.overstreet@linux.dev> # (on IRC)
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b049525855fdd0024881c9b14b8fbec61c3f53d3 upstream.
For the ring buffer iterator (non-consuming read), the event needs to be
copied into the iterator buffer to make sure that a writer does not
overwrite it while the user is reading it. If a write happens during the
copy, the buffer is simply discarded.
But the temp buffer itself was not big enough. The allocation of the
buffer was only BUF_MAX_DATA_SIZE, which is the maximum data size that can
be passed into the ring buffer and saved. But the temp buffer needs to
hold the meta data as well. That would be BUF_PAGE_SIZE and not
BUF_MAX_DATA_SIZE.
Link: https://lore.kernel.org/linux-trace-kernel/20231212072558.61f76493@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 785888c544e04 ("ring-buffer: Have rb_iter_head_event() handle concurrent writer")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d06aff1cb13d2a0d52b48e605462518149c98c81 upstream.
The snapshot buffer is to mimic the main buffer so that when a snapshot is
needed, the snapshot and main buffer are swapped. When the snapshot buffer
is allocated, it is set to the minimal size that the ring buffer may be at
and still functional. When it is allocated it becomes the same size as the
main ring buffer, and when the main ring buffer changes in size, it should
do.
Currently, the resize only updates the snapshot buffer if it's used by the
current tracer (ie. the preemptirqsoff tracer). But it needs to be updated
anytime it is allocated.
When changing the size of the main buffer, instead of looking to see if
the current tracer is utilizing the snapshot buffer, just check if it is
allocated to know if it should be updated or not.
Also fix typo in comment just above the code change.
Link: https://lore.kernel.org/linux-trace-kernel/20231210225447.48476a6a@rorschach.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: ad909e21bbe69 ("tracing: Add internal tracing_snapshot() functions")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 17d801758157bec93f26faaf5ff1a8b9a552d67a upstream.
Reading the ring buffer does a swap of a sub-buffer within the ring buffer
with a empty sub-buffer. This allows the reader to have full access to the
content of the sub-buffer that was swapped out without having to worry
about contention with the writer.
The readers call ring_buffer_alloc_read_page() to allocate a page that
will be used to swap with the ring buffer. When the code is finished with
the reader page, it calls ring_buffer_free_read_page(). Instead of freeing
the page, it stores it as a spare. Then next call to
ring_buffer_alloc_read_page() will return this spare instead of calling
into the memory management system to allocate a new page.
Unfortunately, on freeing of the ring buffer, this spare page is not
freed, and causes a memory leak.
Link: https://lore.kernel.org/linux-trace-kernel/20231210221250.7b9cc83c@rorschach.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 73a757e63114d ("ring-buffer: Return reader page back into existing ring buffer")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7e2c1e4b34f07d9aa8937fab88359d4a0fce468e upstream.
When lockdep is enabled, the for_each_sibling_event(sibling, event)
macro checks that event->ctx->mutex is held. When creating a new group
leader event, we call perf_event_validate_size() on a partially
initialized event where event->ctx is NULL, and so when
for_each_sibling_event() attempts to check event->ctx->mutex, we get a
splat, as reported by Lucas De Marchi:
WARNING: CPU: 8 PID: 1471 at kernel/events/core.c:1950 __do_sys_perf_event_open+0xf37/0x1080
This only happens for a new event which is its own group_leader, and in
this case there cannot be any sibling events. Thus it's safe to skip the
check for siblings, which avoids having to make invasive and ugly
changes to for_each_sibling_event().
Avoid the splat by bailing out early when the new event is its own
group_leader.
Fixes: 382c27f4ed28f803 ("perf: Fix perf_event_validate_size()")
Closes: https://lore.kernel.org/lkml/20231214000620.3081018-1-lucas.demarchi@intel.com/
Closes: https://lore.kernel.org/lkml/ZXpm6gQ%2Fd59jGsuW@xpf.sh.intel.com/
Reported-by: Lucas De Marchi <lucas.demarchi@intel.com>
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231215112450.3972309-1-mark.rutland@arm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 382c27f4ed28f803b1f1473ac2d8db0afc795a1b ]
Budimir noted that perf_event_validate_size() only checks the size of
the newly added event, even though the sizes of all existing events
can also change due to not all events having the same read_format.
When we attach the new event, perf_group_attach(), we do re-compute
the size for all events.
Fixes: a723968c0ed3 ("perf: Fix u16 overflows")
Reported-by: Budimir Markovic <markovicbudimir@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 119a784c81270eb88e573174ed2209225d646656 ]
Sometimes we want to know an accurate number of samples even if it's
lost. Currenlty PERF_RECORD_LOST is generated for a ring-buffer which
might be shared with other events. So it's hard to know per-event
lost count.
Add event->lost_samples field and PERF_FORMAT_LOST to retrieve it from
userspace.
Original-patch-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220616180623.1358843-1-namhyung@kernel.org
Stable-dep-of: 382c27f4ed28 ("perf: Fix perf_event_validate_size()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d78ab792705c7be1b91243b2544d1a79406a2ad7 ]
When the ring buffer is being resized, it can cause side effects to the
running tracer. For instance, there's a race with irqsoff tracer that
swaps individual per cpu buffers between the main buffer and the snapshot
buffer. The resize operation modifies the main buffer and then the
snapshot buffer. If a swap happens in between those two operations it will
break the tracer.
Simply stop the running tracer before resizing the buffers and enable it
again when finished.
Link: https://lkml.kernel.org/r/20231205220010.748996423@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 3928a8a2d9808 ("ftrace: make work with new ring buffer")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6d98a0f2ac3c021d21be66fa34e992137cd25bcb ]
Currently we can resize trace ringbuffer by writing a value into file
'buffer_size_kb', then by reading the file, we get the value that is
usually what we wrote. However, this value may be not actual size of
trace ring buffer because of the round up when doing resize in kernel,
and the actual size would be more useful.
Link: https://lore.kernel.org/linux-trace-kernel/20230705002705.576633-1-zhengyejian1@huawei.com
Cc: <mhiramat@kernel.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: d78ab792705c ("tracing: Stop current tracer when resizing buffer")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b2dd797543cfa6580eac8408dd67fa02164d9e56 ]
There's a race where if an event is discarded from the ring buffer and an
interrupt were to happen at that time and insert an event, the time stamp
is still used from the discarded event as an offset. This can screw up the
timings.
If the event is going to be discarded, set the "before_stamp" to zero.
When a new event comes in, it compares the "before_stamp" with the
"write_stamp" and if they are not equal, it will insert an absolute
timestamp. This will prevent the timings from getting out of sync due to
the discarded event.
Link: https://lore.kernel.org/linux-trace-kernel/20231206100244.5130f9b3@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 6f6be606e763f ("ring-buffer: Force before_stamp and write_stamp to be different on discard")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit c0591b1cccf708a47bc465c62436d669a4213323 upstream.
Function trace_buffered_event_disable() is responsible for freeing pages
backing buffered events and this process can run concurrently with
trace_event_buffer_lock_reserve().
The following race is currently possible:
* Function trace_buffered_event_disable() is called on CPU 0. It
increments trace_buffered_event_cnt on each CPU and waits via
synchronize_rcu() for each user of trace_buffered_event to complete.
* After synchronize_rcu() is finished, function
trace_buffered_event_disable() has the exclusive access to
trace_buffered_event. All counters trace_buffered_event_cnt are at 1
and all pointers trace_buffered_event are still valid.
* At this point, on a different CPU 1, the execution reaches
trace_event_buffer_lock_reserve(). The function calls
preempt_disable_notrace() and only now enters an RCU read-side
critical section. The function proceeds and reads a still valid
pointer from trace_buffered_event[CPU1] into the local variable
"entry". However, it doesn't yet read trace_buffered_event_cnt[CPU1]
which happens later.
* Function trace_buffered_event_disable() continues. It frees
trace_buffered_event[CPU1] and decrements
trace_buffered_event_cnt[CPU1] back to 0.
* Function trace_event_buffer_lock_reserve() continues. It reads and
increments trace_buffered_event_cnt[CPU1] from 0 to 1. This makes it
believe that it can use the "entry" that it already obtained but the
pointer is now invalid and any access results in a use-after-free.
Fix the problem by making a second synchronize_rcu() call after all
trace_buffered_event values are set to NULL. This waits on all potential
users in trace_event_buffer_lock_reserve() that still read a previous
pointer from trace_buffered_event.
Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-4-petr.pavlu@suse.com
Cc: stable@vger.kernel.org
Fixes: 0fc1b09ff1ff ("tracing: Use temp buffer when filtering events")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7fed14f7ac9cf5e38c693836fe4a874720141845 upstream.
The following warning appears when using buffered events:
[ 203.556451] WARNING: CPU: 53 PID: 10220 at kernel/trace/ring_buffer.c:3912 ring_buffer_discard_commit+0x2eb/0x420
[...]
[ 203.670690] CPU: 53 PID: 10220 Comm: stress-ng-sysin Tainted: G E 6.7.0-rc2-default #4 56e6d0fcf5581e6e51eaaecbdaec2a2338c80f3a
[ 203.670704] Hardware name: Intel Corp. GROVEPORT/GROVEPORT, BIOS GVPRCRB1.86B.0016.D04.1705030402 05/03/2017
[ 203.670709] RIP: 0010:ring_buffer_discard_commit+0x2eb/0x420
[ 203.735721] Code: 4c 8b 4a 50 48 8b 42 48 49 39 c1 0f 84 b3 00 00 00 49 83 e8 01 75 b1 48 8b 42 10 f0 ff 40 08 0f 0b e9 fc fe ff ff f0 ff 47 08 <0f> 0b e9 77 fd ff ff 48 8b 42 10 f0 ff 40 08 0f 0b e9 f5 fe ff ff
[ 203.735734] RSP: 0018:ffffb4ae4f7b7d80 EFLAGS: 00010202
[ 203.735745] RAX: 0000000000000000 RBX: ffffb4ae4f7b7de0 RCX: ffff8ac10662c000
[ 203.735754] RDX: ffff8ac0c750be00 RSI: ffff8ac10662c000 RDI: ffff8ac0c004d400
[ 203.781832] RBP: ffff8ac0c039cea0 R08: 0000000000000000 R09: 0000000000000000
[ 203.781839] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
[ 203.781842] R13: ffff8ac10662c000 R14: ffff8ac0c004d400 R15: ffff8ac10662c008
[ 203.781846] FS: 00007f4cd8a67740(0000) GS:ffff8ad798880000(0000) knlGS:0000000000000000
[ 203.781851] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 203.781855] CR2: 0000559766a74028 CR3: 00000001804c4000 CR4: 00000000001506f0
[ 203.781862] Call Trace:
[ 203.781870] <TASK>
[ 203.851949] trace_event_buffer_commit+0x1ea/0x250
[ 203.851967] trace_event_raw_event_sys_enter+0x83/0xe0
[ 203.851983] syscall_trace_enter.isra.0+0x182/0x1a0
[ 203.851990] do_syscall_64+0x3a/0xe0
[ 203.852075] entry_SYSCALL_64_after_hwframe+0x6e/0x76
[ 203.852090] RIP: 0033:0x7f4cd870fa77
[ 203.982920] Code: 00 b8 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 b8 89 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e9 43 0e 00 f7 d8 64 89 01 48
[ 203.982932] RSP: 002b:00007fff99717dd8 EFLAGS: 00000246 ORIG_RAX: 0000000000000089
[ 203.982942] RAX: ffffffffffffffda RBX: 0000558ea1d7b6f0 RCX: 00007f4cd870fa77
[ 203.982948] RDX: 0000000000000000 RSI: 00007fff99717de0 RDI: 0000558ea1d7b6f0
[ 203.982957] RBP: 00007fff99717de0 R08: 00007fff997180e0 R09: 00007fff997180e0
[ 203.982962] R10: 00007fff997180e0 R11: 0000000000000246 R12: 00007fff99717f40
[ 204.049239] R13: 00007fff99718590 R14: 0000558e9f2127a8 R15: 00007fff997180b0
[ 204.049256] </TASK>
For instance, it can be triggered by running these two commands in
parallel:
$ while true; do
echo hist:key=id.syscall:val=hitcount > \
/sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger;
done
$ stress-ng --sysinfo $(nproc)
The warning indicates that the current ring_buffer_per_cpu is not in the
committing state. It happens because the active ring_buffer_event
doesn't actually come from the ring_buffer_per_cpu but is allocated from
trace_buffered_event.
The bug is in function trace_buffered_event_disable() where the
following normally happens:
* The code invokes disable_trace_buffered_event() via
smp_call_function_many() and follows it by synchronize_rcu(). This
increments the per-CPU variable trace_buffered_event_cnt on each
target CPU and grants trace_buffered_event_disable() the exclusive
access to the per-CPU variable trace_buffered_event.
* Maintenance is performed on trace_buffered_event, all per-CPU event
buffers get freed.
* The code invokes enable_trace_buffered_event() via
smp_call_function_many(). This decrements trace_buffered_event_cnt and
releases the access to trace_buffered_event.
A problem is that smp_call_function_many() runs a given function on all
target CPUs except on the current one. The following can then occur:
* Task X executing trace_buffered_event_disable() runs on CPU 0.
* The control reaches synchronize_rcu() and the task gets rescheduled on
another CPU 1.
* The RCU synchronization finishes. At this point,
trace_buffered_event_disable() has the exclusive access to all
trace_buffered_event variables except trace_buffered_event[CPU0]
because trace_buffered_event_cnt[CPU0] is never incremented and if the
buffer is currently unused, remains set to 0.
* A different task Y is scheduled on CPU 0 and hits a trace event. The
code in trace_event_buffer_lock_reserve() sees that
trace_buffered_event_cnt[CPU0] is set to 0 and decides the use the
buffer provided by trace_buffered_event[CPU0].
* Task X continues its execution in trace_buffered_event_disable(). The
code incorrectly frees the event buffer pointed by
trace_buffered_event[CPU0] and resets the variable to NULL.
* Task Y writes event data to the now freed buffer and later detects the
created inconsistency.
The issue is observable since commit dea499781a11 ("tracing: Fix warning
in trace_buffered_event_disable()") which moved the call of
trace_buffered_event_disable() in __ftrace_event_enable_disable()
earlier, prior to invoking call->class->reg(.. TRACE_REG_UNREGISTER ..).
The underlying problem in trace_buffered_event_disable() is however
present since the original implementation in commit 0fc1b09ff1ff
("tracing: Use temp buffer when filtering events").
Fix the problem by replacing the two smp_call_function_many() calls with
on_each_cpu_mask() which invokes a given callback on all CPUs.
Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-2-petr.pavlu@suse.com
Cc: stable@vger.kernel.org
Fixes: 0fc1b09ff1ff ("tracing: Use temp buffer when filtering events")
Fixes: dea499781a11 ("tracing: Fix warning in trace_buffered_event_disable()")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b538bf7d0ec11ca49f536dfda742a5f6db90a798 upstream.
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). When stopping a tracer in an
instance would not disable the snapshot buffer. This could have some
unintended consequences if the irqsoff tracer is enabled.
Consolidate the tracing_start/stop() with tracing_start/stop_tr() so that
all instances behave the same. The tracing_start/stop() functions will
just call their respective tracing_start/stop_tr() with the global_array
passed in.
Link: https://lkml.kernel.org/r/20231205220011.041220035@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 6d9b3fa5e7f6 ("tracing: Move tracing_max_latency into trace_array")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7be76461f302ec05cbd62b90b2a05c64299ca01f upstream.
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). The update of the ring buffer
size would check if the instance was the top level and if so, it would
also update the snapshot buffer as it needs to be the same as the main
buffer.
Now that lower level instances also has a snapshot buffer, they too need
to update their snapshot buffer sizes when the main buffer is changed,
otherwise the following can be triggered:
# cd /sys/kernel/tracing
# echo 1500 > buffer_size_kb
# mkdir instances/foo
# echo irqsoff > instances/foo/current_tracer
# echo 1000 > instances/foo/buffer_size_kb
Produces:
WARNING: CPU: 2 PID: 856 at kernel/trace/trace.c:1938 update_max_tr_single.part.0+0x27d/0x320
Which is:
ret = ring_buffer_swap_cpu(tr->max_buffer.buffer, tr->array_buffer.buffer, cpu);
if (ret == -EBUSY) {
[..]
}
WARN_ON_ONCE(ret && ret != -EAGAIN && ret != -EBUSY); <== here
That's because ring_buffer_swap_cpu() has:
int ret = -EINVAL;
[..]
/* At least make sure the two buffers are somewhat the same */
if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
goto out;
[..]
out:
return ret;
}
Instead, update all instances' snapshot buffer sizes when their main
buffer size is updated.
Link: https://lkml.kernel.org/r/20231205220010.454662151@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 6d9b3fa5e7f6 ("tracing: Move tracing_max_latency into trace_array")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 34209fe83ef8404353f91ab4ea4035dbc9922d04 ]
Function trace_buffered_event_disable() produces an unexpected warning
when the previous call to trace_buffered_event_enable() fails to
allocate pages for buffered events.
The situation can occur as follows:
* The counter trace_buffered_event_ref is at 0.
* The soft mode gets enabled for some event and
trace_buffered_event_enable() is called. The function increments
trace_buffered_event_ref to 1 and starts allocating event pages.
* The allocation fails for some page and trace_buffered_event_disable()
is called for cleanup.
* Function trace_buffered_event_disable() decrements
trace_buffered_event_ref back to 0, recognizes that it was the last
use of buffered events and frees all allocated pages.
* The control goes back to trace_buffered_event_enable() which returns.
The caller of trace_buffered_event_enable() has no information that
the function actually failed.
* Some time later, the soft mode is disabled for the same event.
Function trace_buffered_event_disable() is called. It warns on
"WARN_ON_ONCE(!trace_buffered_event_ref)" and returns.
Buffered events are just an optimization and can handle failures. Make
trace_buffered_event_enable() exit on the first failure and left any
cleanup later to when trace_buffered_event_disable() is called.
Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-3-petr.pavlu@suse.com
Fixes: 0fc1b09ff1ff ("tracing: Use temp buffer when filtering events")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 73b4b53276a1d6290cd4f47dbbc885b6e6e59ac6 ]
This reverts commit 6417250d3f894e66a68ba1cd93676143f2376a6f.
amdpgu need this function in order to prematurly stop pending
reset works when another reset work already in progress.
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrey Grodzovsky <andrey.grodzovsky@amd.com>
Reviewed-by: Lai Jiangshan<jiangshanlai@gmail.com>
Reviewed-by: Christian König <christian.koenig@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
Stable-dep-of: 91d3d149978b ("r8169: prevent potential deadlock in rtl8169_close")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bca4104b00fec60be330cd32818dd5c70db3d469 ]
Kent reported an occasional KASAN splat in lockdep. Mark then noted:
> I suspect the dodgy access is to chain_block_buckets[-1], which hits the last 4
> bytes of the redzone and gets (incorrectly/misleadingly) attributed to
> nr_large_chain_blocks.
That would mean @size == 0, at which point size_to_bucket() returns -1
and the above happens.
alloc_chain_hlocks() has 'size - req', for the first with the
precondition 'size >= rq', which allows the 0.
This code is trying to split a block, del_chain_block() takes what we
need, and add_chain_block() puts back the remainder, except in the
above case the remainder is 0 sized and things go sideways.
Fixes: 810507fe6fd5 ("locking/lockdep: Reuse freed chain_hlocks entries")
Reported-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Kent Overstreet <kent.overstreet@linux.dev>
Link: https://lkml.kernel.org/r/20231121114126.GH8262@noisy.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit bb32500fb9b78215e4ef6ee8b4345c5f5d7eafb4 upstream.
The following can crash the kernel:
# cd /sys/kernel/tracing
# echo 'p:sched schedule' > kprobe_events
# exec 5>>events/kprobes/sched/enable
# > kprobe_events
# exec 5>&-
The above commands:
1. Change directory to the tracefs directory
2. Create a kprobe event (doesn't matter what one)
3. Open bash file descriptor 5 on the enable file of the kprobe event
4. Delete the kprobe event (removes the files too)
5. Close the bash file descriptor 5
The above causes a crash!
BUG: kernel NULL pointer dereference, address: 0000000000000028
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 6 PID: 877 Comm: bash Not tainted 6.5.0-rc4-test-00008-g2c6b6b1029d4-dirty #186
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:tracing_release_file_tr+0xc/0x50
What happens here is that the kprobe event creates a trace_event_file
"file" descriptor that represents the file in tracefs to the event. It
maintains state of the event (is it enabled for the given instance?).
Opening the "enable" file gets a reference to the event "file" descriptor
via the open file descriptor. When the kprobe event is deleted, the file is
also deleted from the tracefs system which also frees the event "file"
descriptor.
But as the tracefs file is still opened by user space, it will not be
totally removed until the final dput() is called on it. But this is not
true with the event "file" descriptor that is already freed. If the user
does a write to or simply closes the file descriptor it will reference the
event "file" descriptor that was just freed, causing a use-after-free bug.
To solve this, add a ref count to the event "file" descriptor as well as a
new flag called "FREED". The "file" will not be freed until the last
reference is released. But the FREE flag will be set when the event is
removed to prevent any more modifications to that event from happening,
even if there's still a reference to the event "file" descriptor.
Link: https://lore.kernel.org/linux-trace-kernel/20231031000031.1e705592@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20231031122453.7a48b923@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Fixes: f5ca233e2e66d ("tracing: Increase trace array ref count on enable and filter files")
Reported-by: Beau Belgrave <beaub@linux.microsoft.com>
Tested-by: Beau Belgrave <beaub@linux.microsoft.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>