[ Upstream commit 367c50f78451d3bd7ad70bc5c89f9ba6dec46ca9 ]
Current average steal timer calculation produces volatile and inflated
values. The only user of this value is KVM so far and it uses that to
decide whether or not to yield the vCPU which is seeing steal time.
KVM compares average steal timer to a threshold and if the threshold
is past then it does not allow CPU polling and yields it to host, else
it keeps the CPU by polling.
Since KVM's steal time threshold is very low by default (%10) it most
likely is not effected much by the bloated average steal timer values
because the operating region is pretty small. However there might be
new users in the future who might rely on this number. Fix average
steal timer calculation by changing the formula from:
avg_steal_timer = avg_steal_timer / 2 + steal_timer;
to the following:
avg_steal_timer = (avg_steal_timer + steal_timer) / 2;
This ensures that avg_steal_timer is actually a naive average of steal
timer values. It now closely follows steal timer values but of course
in a smoother manner.
Fixes: 152e9b8676c6 ("s390/vtime: steal time exponential moving average")
Signed-off-by: Mete Durlu <meted@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8b13601d19c541158a6e18b278c00ba69ae37829 ]
If the content of the floating point control (fpc) register of a traced
process is modified with the ptrace interface the new value is tested for
validity by temporarily loading it into the fpc register.
This may lead to corruption of the fpc register of the tracing process:
if an interrupt happens while the value is temporarily loaded into the
fpc register, and within interrupt context floating point or vector
registers are used, the current fp/vx registers are saved with
save_fpu_regs() assuming they belong to user space and will be loaded into
fp/vx registers when returning to user space.
test_fp_ctl() restores the original user space fpc register value, however
it will be discarded, when returning to user space.
In result the tracer will incorrectly continue to run with the value that
was supposed to be used for the traced process.
Fix this by saving fpu register contents with save_fpu_regs() before using
test_fp_ctl().
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>