commit 871019b22d1bcc9fab2d1feba1b9a564acbb6e99 upstream.
We've started to see the following kernel traces:
WARNING: CPU: 83 PID: 0 at net/core/filter.c:6641 sk_lookup+0x1bd/0x1d0
Call Trace:
<IRQ>
__bpf_skc_lookup+0x10d/0x120
bpf_sk_lookup+0x48/0xd0
bpf_sk_lookup_tcp+0x19/0x20
bpf_prog_<redacted>+0x37c/0x16a3
cls_bpf_classify+0x205/0x2e0
tcf_classify+0x92/0x160
__netif_receive_skb_core+0xe52/0xf10
__netif_receive_skb_list_core+0x96/0x2b0
napi_complete_done+0x7b5/0xb70
<redacted>_poll+0x94/0xb0
net_rx_action+0x163/0x1d70
__do_softirq+0xdc/0x32e
asm_call_irq_on_stack+0x12/0x20
</IRQ>
do_softirq_own_stack+0x36/0x50
do_softirq+0x44/0x70
__inet_hash can race with lockless (rcu) readers on the other cpus:
__inet_hash
__sk_nulls_add_node_rcu
<- (bpf triggers here)
sock_set_flag(SOCK_RCU_FREE)
Let's move the SOCK_RCU_FREE part up a bit, before we are inserting
the socket into hashtables. Note, that the race is really harmless;
the bpf callers are handling this situation (where listener socket
doesn't have SOCK_RCU_FREE set) correctly, so the only
annoyance is a WARN_ONCE.
More details from Eric regarding SOCK_RCU_FREE timeline:
Commit 3b24d854cb35 ("tcp/dccp: do not touch listener sk_refcnt under
synflood") added SOCK_RCU_FREE. At that time, the precise location of
sock_set_flag(sk, SOCK_RCU_FREE) did not matter, because the thread calling
__inet_hash() owns a reference on sk. SOCK_RCU_FREE was only tested
at dismantle time.
Commit 6acc9b432e67 ("bpf: Add helper to retrieve socket in BPF")
started checking SOCK_RCU_FREE _after_ the lookup to infer whether
the refcount has been taken care of.
Fixes: 6acc9b432e67 ("bpf: Add helper to retrieve socket in BPF")
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
[Resolved conflict for 5.10 and below.]
Signed-off-by: Siddh Raman Pant <siddh.raman.pant@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit fc1ca3348a74a1afaa7ffebc2b2f2cc149e11278 ]
All gro_receive() handlers are called from dev_gro_receive()
while rcu_read_lock() has been called.
There is no point stacking more rcu_read_lock()
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Stable-dep-of: 7e4196935069 ("fou: Fix null-ptr-deref in GRO.")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 627b94f75b82d13d1530b59155a545fd99d807db ]
All gro_complete() handlers are called from napi_gro_complete()
while rcu_read_lock() has been called.
There is no point stacking more rcu_read_lock()
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Stable-dep-of: 7e4196935069 ("fou: Fix null-ptr-deref in GRO.")
Signed-off-by: Sasha Levin <sashal@kernel.org>
Detect gso fraglist skbs with corrupted geometry (see below) and
pass these to skb_segment instead of skb_segment_list, as the first
can segment them correctly.
Valid SKB_GSO_FRAGLIST skbs
- consist of two or more segments
- the head_skb holds the protocol headers plus first gso_size
- one or more frag_list skbs hold exactly one segment
- all but the last must be gso_size
Optional datapath hooks such as NAT and BPF (bpf_skb_pull_data) can
modify these skbs, breaking these invariants.
In extreme cases they pull all data into skb linear. For UDP, this
causes a NULL ptr deref in __udpv4_gso_segment_list_csum at
udp_hdr(seg->next)->dest.
Detect invalid geometry due to pull, by checking head_skb size.
Don't just drop, as this may blackhole a destination. Convert to be
able to pass to regular skb_segment.
Link: https://lore.kernel.org/netdev/20240428142913.18666-1-shiming.cheng@mediatek.com/
Fixes: 9fd1ff5d2ac7 ("udp: Support UDP fraglist GRO/GSO.")
Signed-off-by: Willem de Bruijn <willemb@google.com>
Cc: stable@vger.kernel.org
Link: https://patch.msgid.link/20241001171752.107580-1-willemdebruijn.kernel@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Bug: 373245346
Bug: 333849117
Change-Id: I5a317e002f149cf9d399dce9bf87cd649a24da19
(cherry picked from commit a1e40ac5b5e9077fe1f7ae0eb88034db0f9ae1ab)
Signed-off-by: Lena Wang <lena.wang@mediatek.corp-partner.google.com>
(cherry picked from commit 42c2d1ea7c1bf984372f0ca1711d91165cbb87a6)
(cherry picked from commit 7376b8e51c4ddaa8e36b2b33d6ac3392135183b1)
[ Upstream commit 54f89b3178d5448dd4457afbb98fc1ab99090a65 ]
When bpf_tcp_ingress() is called, the skmsg is being redirected to the
ingress of the destination socket. Therefore, we should charge its
receive socket buffer, instead of sending socket buffer.
Because sk_rmem_schedule() tests pfmemalloc of skb, we need to
introduce a wrapper and call it for skmsg.
Fixes: 604326b41a6f ("bpf, sockmap: convert to generic sk_msg interface")
Signed-off-by: Cong Wang <cong.wang@bytedance.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20241210012039.1669389-2-zijianzhang@bytedance.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 06d64ab46f19ac12f59a1d2aa8cd196b2e4edb5b upstream.
Ensure there is enough space before adding MPTCP options in
tcp_syn_options().
Without this check, 'remaining' could underflow, and causes issues. If
there is not enough space, MPTCP should not be used.
Signed-off-by: MoYuanhao <moyuanhao3676@163.com>
Fixes: cec37a6e41aa ("mptcp: Handle MP_CAPABLE options for outgoing connections")
Cc: stable@vger.kernel.org
Acked-by: Matthieu Baerts (NGI0) <matttbe@kernel.org>
[ Matt: Add Fixes, cc Stable, update Description ]
Signed-off-by: Matthieu Baerts (NGI0) <matttbe@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://patch.msgid.link/20241209-net-mptcp-check-space-syn-v1-1-2da992bb6f74@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
PLB (Protective Load Balancing) is a host based mechanism for load
balancing across switch links. It leverages congestion signals(e.g. ECN)
from transport layer to randomly change the path of the connection
experiencing congestion. PLB changes the path of the connection by
changing the outgoing IPv6 flow label for IPv6 connections (implemented
in Linux by calling sk_rethink_txhash()). Because of this implementation
mechanism, PLB can currently only work for IPv6 traffic. For more
information, see the SIGCOMM 2022 paper:
https://doi.org/10.1145/3544216.3544226
This commit adds new sysctl knobs and sets their default values for
TCP PLB.
Signed-off-by: Mubashir Adnan Qureshi <mubashirq@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
PLB support is added to TCP DCTCP code. As DCTCP uses ECN as the
congestion signal, PLB also uses ECN to make decisions whether to change
the path or not upon sustained congestion.
Signed-off-by: Mubashir Adnan Qureshi <mubashirq@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
rcv_wnd can be useful to diagnose TCP performance where receiver window
becomes the bottleneck. rehash reports the PLB and timeout triggered
rehash attempts by the TCP connection.
Signed-off-by: Mubashir Adnan Qureshi <mubashirq@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
We had various bugs over the years with code
breaking the assumption that tp->snd_cwnd is greater
than zero.
Lately, syzbot reported the WARN_ON_ONCE(!tp->prior_cwnd) added
in commit 8b8a321ff72c ("tcp: fix zero cwnd in tcp_cwnd_reduction")
can trigger, and without a repro we would have to spend
considerable time finding the bug.
Instead of complaining too late, we want to catch where
and when tp->snd_cwnd is set to an illegal value.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Suggested-by: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Link: https://lore.kernel.org/r/20220405233538.947344-1-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
In order to track CE marks per rate sample (one round trip), TCP needs a
per-skb header field to record the tp->delivered_ce count when the skb
was sent. To make space, we replace the "last_in_flight" field which is
used exclusively for NV congestion control. The stat needed by NV can be
alternatively approximated by existing stats tcp_sock delivered and
mss_cache.
This patch counts the number of packets delivered which have CE marks in
the rate sample, using similar approach of delivery accounting.
Cc: Lawrence Brakmo <brakmo@fb.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Luke Hsiao <lukehsiao@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
This commit is a bug fix for the Linux TCP app-limited
(application-limited) logic that is used for collecting rate
(bandwidth) samples.
Previously the app-limited logic only looked for "bubbles" of
silence in between application writes, by checking at the start
of each sendmsg. But "bubbles" of silence can also happen before
retransmits: e.g. bubbles can happen between an application write
and a retransmit, or between two retransmits.
Retransmits are triggered by ACKs or timers. So this commit checks
for bubbles of app-limited silence upon ACKs or timers.
Why does this commit check for app-limited state at the start of
ACKs and timer handling? Because at that point we know whether
inflight was fully using the cwnd. During processing the ACK or
timer event we often change the cwnd; after changing the cwnd we
can't know whether inflight was fully using the old cwnd.
Origin-9xx-SHA1: 3fe9b53291e018407780fb8c356adb5666722cbc
Change-Id: I37221506f5166877c2b110753d39bb0757985e68
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
For understanding the relationship between inflight and ECN signals,
to try to find the highest inflight value that has acceptable levels
ECN marking.
Effort: net-tcp_bbr
Origin-9xx-SHA1: 3eba998f2898541406c2666781182200934965a8
Change-Id: I3a964e04cee83e11649a54507043d2dfe769a3b3
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
For connections experiencing reordering, RACK can mark packets lost
long after we receive the SACKs/ACKs hinting that the packets were
actually lost.
This means that CC modules cannot easily learn the volume of inflight
data at which packet loss happens by looking at the current inflight
or even the packets in flight when the most recently SACKed packet was
sent. To learn this, CC modules need to know how many packets were in
flight at the time lost packets were sent. This new callback, combined
with TCP_SKB_CB(skb)->tx.in_flight, allows them to learn this.
This also provides a consistent callback that is invoked whether
packets are marked lost upon ACK processing, using the RACK reordering
timer, or at RTO time.
Effort: net-tcp_bbr
Origin-9xx-SHA1: afcbebe3374e4632ac6714d39e4dc8a8455956f4
Change-Id: I54826ab53df636be537e5d3c618a46145d12d51a
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
When tcp_shifted_skb() updates state as adjacent SACKed skbs are
coalesced, previously the tx.in_flight was not adjusted, so we could
get contradictory state where the skb's recorded pcount was bigger
than the tx.in_flight (the number of segments that were in_flight
after sending the skb).
Normally have a SACKed skb with contradictory pcount/tx.in_flight
would not matter. However, with SACK reneging, the SACKed bit is
removed, and an skb once again becomes eligible for retransmitting,
fragmenting, SACKing, etc. Packetdrill testing verified the following
sequence is possible in a kernel that does not have this commit:
- skb N is SACKed
- skb N+1 is SACKed and combined with skb N using tcp_shifted_skb()
- tcp_shifted_skb() will increase the pcount of prev,
but leave tx.in_flight as-is
- so prev skb can have pcount > tx.in_flight
- RTO, tcp_timeout_mark_lost(), detect reneg,
remove "SACKed" bit, mark skb N as lost
- find pcount of skb N is greater than its tx.in_flight
I suspect this issue iw what caused the bbr2_inflight_hi_from_lost_skb():
WARN_ON_ONCE(inflight_prev < 0)
to fire in production machines using bbr2.
Effort: net-tcp_bbr
Origin-9xx-SHA1: 1a3e997e613d2dcf32b947992882854ebe873715
Change-Id: I1b0b75c27519953430c7db51c6f358f104c7af55
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
When we fragment an skb that has already been sent, we need to update
the tx.in_flight for the first skb in the resulting pair ("buff").
Because we were not updating the tx.in_flight, the tx.in_flight value
was inconsistent with the pcount of the "buff" skb (tx.in_flight would
be too high). That meant that if the "buff" skb was lost, then
bbr2_inflight_hi_from_lost_skb() would calculate an inflight_hi value
that is too high. This could result in longer queues and higher packet
loss.
Packetdrill testing verified that without this commit, when the second
half of an skb is SACKed and then later the first half of that skb is
marked lost, the calculated inflight_hi was incorrect.
Effort: net-tcp_bbr
Origin-9xx-SHA1: 385f1ddc610798fab2837f9f372857438b25f874
Origin-9xx-SHA1: a0eb099690af net-tcp_bbr: v2: fix tcp_fragment() tx.in_flight recomputation [prod feb 8 2021; use as a fixup]
Origin-9xx-SHA1: 885503228153ff0c9114e net-tcp_bbr: v2: introduce tcp_skb_tx_in_flight_is_suspicious() helper for warnings
Change-Id: I617f8cab4e9be7a0b8e8d30b047bf8645393354d
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
Add a a new ca opts flag TCP_CONG_WANTS_CE_EVENTS that allows a
congestion control module to receive CE events.
Currently congestion control modules have to set the TCP_CONG_NEEDS_ECN
bit in opts flag to receive CE events but this may incur changes in ECN
behavior elsewhere. This patch adds a new bit TCP_CONG_WANTS_CE_EVENTS
that allows congestion control modules to receive CE events
independently of TCP_CONG_NEEDS_ECN.
Effort: net-tcp
Origin-9xx-SHA1: 9f7e14716cde760bc6c67ef8ef7e1ee48501d95b
Change-Id: I2255506985242f376d910c6fd37daabaf4744f24
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
Add logic for an experimental TCP connection behavior, enabled with
tp->fast_ack_mode = 1, which disables checking the receive window
before sending an ack in __tcp_ack_snd_check(). If this behavior is
enabled, the data receiver sends an ACK if the amount of data is >
RCV.MSS.
Change-Id: Iaa0a0fd7108221f883137a79d5bfa724f1b096d4
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
Before this commit, when there is a packet loss that creates a sequence
hole that is filled by a TLP loss probe, then tcp_process_tlp_ack()
only informs the congestion control (CC) module via a back-to-back entry
and exit of CWR. But some congestion control modules (e.g. BBR) do not
respond to CWR events.
This commit adds a new CA event with which the core TCP stack notifies
the CC module when a loss is repaired by a TLP. This will allow CC
modules that do not use the CWR mechanism to have a custom handler for
such TLP recoveries.
Effort: net-tcp_bbr
Change-Id: Ieba72332b401b329bff5a641d2b2043a3fb8f632
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
Introduce is_acking_tlp_retrans_seq into rate_sample. This bool will
export to the CC module the knowledge of whether the current ACK
matched a TLP retransmit.
Note that when this bool is true, we cannot yet tell (in general) whether
this ACK is for the original or the TLP retransmit.
Effort: net-tcp_bbr
Change-Id: I2e6494332167e75efcbdc99bd5c119034e9c39b4
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
Define and implement a new per-route feature, RTAX_FEATURE_ECN_LOW.
This feature indicates that the given destination network is a
low-latency ECN environment, meaning both that ECN CE marks are
applied by the network using a low-latency marking threshold and also
that TCP endpoints provide precise per-data-segment ECN feedback in
ACKs (where the ACK ECE flag echoes the received CE status of all
newly-acknowledged data segments). This feature indication can be used
by congestion control algorithms to decide how to interpret ECN
signals over the given destination network.
This feature is appropriate for datacenter-style ECN marking, such as
the ECN marking approach expected by DCTCP or BBR congestion control
modules.
Signed-off-by: David Morley <morleyd@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Tested-by: David Morley <morleyd@google.com>
Change-Id: I6bc06e9c6cb426fbae7243fc71c9a8c18175f5d3
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
Analogous to other important ECN information, export TCPI_OPT_ECN_LOW
in tcp_info tcpi_options field.
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Change-Id: I08d8d8c7e8780e6e37df54038ee50301ac5a0320
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
[ Upstream commit 9365fa510c6f82e3aa550a09d0c5c6b44dbc78ff ]
sock_init_data() attaches the allocated sk object to the provided sock
object. If inet_create() fails later, the sk object is freed, but the
sock object retains the dangling pointer, which may create use-after-free
later.
Clear the sk pointer in the sock object on error.
Signed-off-by: Ignat Korchagin <ignat@cloudflare.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://patch.msgid.link/20241014153808.51894-7-ignat@cloudflare.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ca70b8baf2bd125b2a4d96e76db79375c07d7ff2 ]
The current sk memory accounting logic in __SK_REDIRECT is pre-uncharging
tosend bytes, which is either msg->sg.size or a smaller value apply_bytes.
Potential problems with this strategy are as follows:
- If the actual sent bytes are smaller than tosend, we need to charge some
bytes back, as in line 487, which is okay but seems not clean.
- When tosend is set to apply_bytes, as in line 417, and (ret < 0), we may
miss uncharging (msg->sg.size - apply_bytes) bytes.
[...]
415 tosend = msg->sg.size;
416 if (psock->apply_bytes && psock->apply_bytes < tosend)
417 tosend = psock->apply_bytes;
[...]
443 sk_msg_return(sk, msg, tosend);
444 release_sock(sk);
446 origsize = msg->sg.size;
447 ret = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
448 msg, tosend, flags);
449 sent = origsize - msg->sg.size;
[...]
454 lock_sock(sk);
455 if (unlikely(ret < 0)) {
456 int free = sk_msg_free_nocharge(sk, msg);
458 if (!cork)
459 *copied -= free;
460 }
[...]
487 if (eval == __SK_REDIRECT)
488 sk_mem_charge(sk, tosend - sent);
[...]
When running the selftest test_txmsg_redir_wait_sndmem with txmsg_apply,
the following warning will be reported:
------------[ cut here ]------------
WARNING: CPU: 6 PID: 57 at net/ipv4/af_inet.c:156 inet_sock_destruct+0x190/0x1a0
Modules linked in:
CPU: 6 UID: 0 PID: 57 Comm: kworker/6:0 Not tainted 6.12.0-rc1.bm.1-amd64+ #43
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
Workqueue: events sk_psock_destroy
RIP: 0010:inet_sock_destruct+0x190/0x1a0
RSP: 0018:ffffad0a8021fe08 EFLAGS: 00010206
RAX: 0000000000000011 RBX: ffff9aab4475b900 RCX: ffff9aab481a0800
RDX: 0000000000000303 RSI: 0000000000000011 RDI: ffff9aab4475b900
RBP: ffff9aab4475b990 R08: 0000000000000000 R09: ffff9aab40050ec0
R10: 0000000000000000 R11: ffff9aae6fdb1d01 R12: ffff9aab49c60400
R13: ffff9aab49c60598 R14: ffff9aab49c60598 R15: dead000000000100
FS: 0000000000000000(0000) GS:ffff9aae6fd80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ffec7e47bd8 CR3: 00000001a1a1c004 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
? __warn+0x89/0x130
? inet_sock_destruct+0x190/0x1a0
? report_bug+0xfc/0x1e0
? handle_bug+0x5c/0xa0
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? inet_sock_destruct+0x190/0x1a0
__sk_destruct+0x25/0x220
sk_psock_destroy+0x2b2/0x310
process_scheduled_works+0xa3/0x3e0
worker_thread+0x117/0x240
? __pfx_worker_thread+0x10/0x10
kthread+0xcf/0x100
? __pfx_kthread+0x10/0x10
ret_from_fork+0x31/0x40
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
---[ end trace 0000000000000000 ]---
In __SK_REDIRECT, a more concise way is delaying the uncharging after sent
bytes are finalized, and uncharge this value. When (ret < 0), we shall
invoke sk_msg_free.
Same thing happens in case __SK_DROP, when tosend is set to apply_bytes,
we may miss uncharging (msg->sg.size - apply_bytes) bytes. The same
warning will be reported in selftest.
[...]
468 case __SK_DROP:
469 default:
470 sk_msg_free_partial(sk, msg, tosend);
471 sk_msg_apply_bytes(psock, tosend);
472 *copied -= (tosend + delta);
473 return -EACCES;
[...]
So instead of sk_msg_free_partial we can do sk_msg_free here.
Fixes: 604326b41a6f ("bpf, sockmap: convert to generic sk_msg interface")
Fixes: 8ec95b94716a ("bpf, sockmap: Fix the sk->sk_forward_alloc warning of sk_stream_kill_queues")
Signed-off-by: Zijian Zhang <zijianzhang@bytedance.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20241016234838.3167769-3-zijianzhang@bytedance.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fc9c273d6daaa9866f349bbe8cae25c67764c456 ]
Similar to the previous patch, plumb the RCU lock inside
the ipmr_get_table(), provided a lockless variant and apply
the latter in the few spots were the lock is already held.
Fixes: 709b46e8d90b ("net: Add compat ioctl support for the ipv4 multicast ioctl SIOCGETSGCNT")
Fixes: f0ad0860d01e ("ipv4: ipmr: support multiple tables")
Reviewed-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b96ef16d2f837870daaea51c38cd50458b95ad5c ]
We can use standard rcu_read_lock(), to get rid
of last read_lock(&mrt_lock) call points.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Stable-dep-of: fc9c273d6daa ("ipmr: fix tables suspicious RCU usage")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e28acc9c1ccfcb24c08e020828f69d0a915b06ae ]
Accessing `mr_table->mfc_cache_list` is protected by an RCU lock. In the
following code flow, the RCU read lock is not held, causing the
following error when `RCU_PROVE` is not held. The same problem might
show up in the IPv6 code path.
6.12.0-rc5-kbuilder-01145-gbac17284bdcb #33 Tainted: G E N
-----------------------------
net/ipv4/ipmr_base.c:313 RCU-list traversed in non-reader section!!
rcu_scheduler_active = 2, debug_locks = 1
2 locks held by RetransmitAggre/3519:
#0: ffff88816188c6c0 (nlk_cb_mutex-ROUTE){+.+.}-{3:3}, at: __netlink_dump_start+0x8a/0x290
#1: ffffffff83fcf7a8 (rtnl_mutex){+.+.}-{3:3}, at: rtnl_dumpit+0x6b/0x90
stack backtrace:
lockdep_rcu_suspicious
mr_table_dump
ipmr_rtm_dumproute
rtnl_dump_all
rtnl_dumpit
netlink_dump
__netlink_dump_start
rtnetlink_rcv_msg
netlink_rcv_skb
netlink_unicast
netlink_sendmsg
This is not a problem per see, since the RTNL lock is held here, so, it
is safe to iterate in the list without the RCU read lock, as suggested
by Eric.
To alleviate the concern, modify the code to use
list_for_each_entry_rcu() with the RTNL-held argument.
The annotation will raise an error only if RTNL or RCU read lock are
missing during iteration, signaling a legitimate problem, otherwise it
will avoid this false positive.
This will solve the IPv6 case as well, since ip6mr_rtm_dumproute() calls
this function as well.
Signed-off-by: Breno Leitao <leitao@debian.org>
Reviewed-by: David Ahern <dsahern@kernel.org>
Link: https://patch.msgid.link/20241108-ipmr_rcu-v2-1-c718998e209b@debian.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>