commit edbbaae42a56f9a2b39c52ef2504dfb3fb0a7858 upstream.
Currently, whenever a caller is providing an affinity hint for an
interrupt, the allocation code uses it to calculate the node and copies the
cpumask into irq_desc::affinity.
If the affinity for the interrupt is not marked 'managed' then the startup
of the interrupt ignores irq_desc::affinity and uses the system default
affinity mask.
Prevent this by setting the IRQD_AFFINITY_SET flag for the interrupt in the
allocator, which causes irq_setup_affinity() to use irq_desc::affinity on
interrupt startup if the mask contains an online CPU.
[ tglx: Massaged changelog ]
Fixes: 45ddcecbfa94 ("genirq: Use affinity hint in irqdesc allocation")
Signed-off-by: Shay Drory <shayd@nvidia.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/all/20240806072044.837827-1-shayd@nvidia.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
On ARM, IRQs are executed on the first CPU inside the affinity mask, so
setting an affinity mask with more than one CPU set is deceptive and
causes issues with pm_qos. To fix this, only set the CPU0 bit inside the
affinity mask, since that's where IRQs will run by default.
This is a follow-up to "kernel: Don't allow IRQ affinity masks to have
more than one CPU".
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
This is a simple IRQ balancer that polls every X number of milliseconds and
moves IRQs from the most interrupt-heavy CPU to the least interrupt-heavy
CPUs until the heaviest CPU is no longer the heaviest. IRQs are only moved
from one source CPU to any number of destination CPUs per balance run.
Balancing is skipped if the gap between the most interrupt-heavy CPU and
the least interrupt-heavy CPU is below the configured threshold of
interrupts.
The heaviest IRQs are targeted for migration in order to reduce the number
of IRQs to migrate. If moving an IRQ would reduce overall balance, then it
won't be migrated.
The most interrupt-heavy CPU is calculated by scaling the number of new
interrupts on that CPU to the CPU's current capacity. This way, interrupt
heaviness takes into account factors such as thermal pressure and time
spent processing interrupts rather than just the sheer number of them. This
also makes SBalance aware of CPU asymmetry, where different CPUs can have
different performance capacities and be proportionally balanced.
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>