Shadow stacks are only available in the kernel, so disable SCS
instrumentation for the vDSO.
Bug: 145210207
Change-Id: I6e01b2c7788ba52d3b754b1fbd5bfb908b45741b
(am from https://lore.kernel.org/patchwork/patch/1149061/)
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
These are disabled in the kernel already, so it's pointless to have them here.
This time we keep dss on, because otherwise last_kmsg stops working.
Signed-off-by: Nahuel Gómez <nahuelgomez329@gmail.com>
commit 7602ffd1d5e8927fadd5187cb4aed2fdc9c47143 upstream.
When DISCARD frees an ITE, it does not invalidate the
corresponding ITE. In the scenario of continuous saves and
restores, there may be a situation where an ITE is not saved
but is restored. This is unreasonable and may cause restore
to fail. This patch clears the corresponding ITE when DISCARD
frees an ITE.
Cc: stable@vger.kernel.org
Fixes: eff484e0298d ("KVM: arm64: vgic-its: ITT save and restore")
Signed-off-by: Kunkun Jiang <jiangkunkun@huawei.com>
[Jing: Update with entry write helper]
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Link: https://lore.kernel.org/r/20241107214137.428439-6-jingzhangos@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e9649129d33dca561305fc590a7c4ba8c3e5675a upstream.
vgic_its_save_device_tables will traverse its->device_list to
save DTE for each device. vgic_its_restore_device_tables will
traverse each entry of device table and check if it is valid.
Restore if valid.
But when MAPD unmaps a device, it does not invalidate the
corresponding DTE. In the scenario of continuous saves
and restores, there may be a situation where a device's DTE
is not saved but is restored. This is unreasonable and may
cause restore to fail. This patch clears the corresponding
DTE when MAPD unmaps a device.
Cc: stable@vger.kernel.org
Fixes: 57a9a117154c ("KVM: arm64: vgic-its: Device table save/restore")
Co-developed-by: Shusen Li <lishusen2@huawei.com>
Signed-off-by: Shusen Li <lishusen2@huawei.com>
Signed-off-by: Kunkun Jiang <jiangkunkun@huawei.com>
[Jing: Update with entry write helper]
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Link: https://lore.kernel.org/r/20241107214137.428439-5-jingzhangos@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7fe28d7e68f92cc3d0668b8f2fbdf5c303ac3022 upstream.
In all the vgic_its_save_*() functinos, they do not check whether
the data length is 8 bytes before calling vgic_write_guest_lock.
This patch adds the check. To prevent the kernel from being blown up
when the fault occurs, KVM_BUG_ON() is used. And the other BUG_ON()s
are replaced together.
Cc: stable@vger.kernel.org
Signed-off-by: Kunkun Jiang <jiangkunkun@huawei.com>
[Jing: Update with the new entry read/write helpers]
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Link: https://lore.kernel.org/r/20241107214137.428439-4-jingzhangos@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ca62d90085f4af36de745883faab9f8a7cbb45d3 upstream.
Currently tagged_addr_ctrl_set() doesn't initialize the temporary 'ctrl'
variable, and a SETREGSET call with a length of zero will leave this
uninitialized. Consequently tagged_addr_ctrl_set() will consume an
arbitrary value, potentially leaking up to 64 bits of memory from the
kernel stack. The read is limited to a specific slot on the stack, and
the issue does not provide a write mechanism.
As set_tagged_addr_ctrl() only accepts values where bits [63:4] zero and
rejects other values, a partial SETREGSET attempt will randomly succeed
or fail depending on the value of the uninitialized value, and the
exposure is significantly limited.
Fix this by initializing the temporary value before copying the regset
from userspace, as for other regsets (e.g. NT_PRSTATUS, NT_PRFPREG,
NT_ARM_SYSTEM_CALL). In the case of a zero-length write, the existing
value of the tagged address ctrl will be retained.
The NT_ARM_TAGGED_ADDR_CTRL regset is only visible in the
user_aarch64_view used by a native AArch64 task to manipulate another
native AArch64 task. As get_tagged_addr_ctrl() only returns an error
value when called for a compat task, tagged_addr_ctrl_get() and
tagged_addr_ctrl_set() should never observe an error value from
get_tagged_addr_ctrl(). Add a WARN_ON_ONCE() to both to indicate that
such an error would be unexpected, and error handlnig is not missing in
either case.
Fixes: 2200aa7154cb ("arm64: mte: ptrace: Add NT_ARM_TAGGED_ADDR_CTRL regset")
Cc: <stable@vger.kernel.org> # 5.10.x
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241205121655.1824269-2-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 67ab51cbdfee02ef07fb9d7d14cc0bf6cb5a5e5c upstream.
Commit 18011eac28c7 ("arm64: tls: Avoid unconditional zeroing of
tpidrro_el0 for native tasks") tried to optimise the context switching
of tpidrro_el0 by eliding the clearing of the register when switching
to a native task with kpti enabled, on the erroneous assumption that
the kpti trampoline entry code would already have taken care of the
write.
Although the kpti trampoline does zero the register on entry from a
native task, the check in tls_thread_switch() is on the *next* task and
so we can end up leaving a stale, non-zero value in the register if the
previous task was 32-bit.
Drop the broken optimisation and zero tpidrro_el0 unconditionally when
switching to a native 64-bit task.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: stable@vger.kernel.org
Fixes: 18011eac28c7 ("arm64: tls: Avoid unconditional zeroing of tpidrro_el0 for native tasks")
Signed-off-by: Will Deacon <will@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20241114095332.23391-1-will@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 54bbee190d42166209185d89070c58a343bf514b upstream.
DDI0487K.a D13.3.1 describes the PMU overflow condition, which evaluates
to true if any counter's global enable (PMCR_EL0.E), overflow flag
(PMOVSSET_EL0[n]), and interrupt enable (PMINTENSET_EL1[n]) are all 1.
Of note, this does not require a counter to be enabled
(i.e. PMCNTENSET_EL0[n] = 1) to generate an overflow.
Align kvm_pmu_overflow_status() with the reality of the architecture
and stop using PMCNTENSET_EL0 as part of the overflow condition. The
bug was discovered while running an SBSA PMU test [*], which only sets
PMCR.E, PMOVSSET<0>, PMINTENSET<0>, and expects an overflow interrupt.
Cc: stable@vger.kernel.org
Fixes: 76d883c4e640 ("arm64: KVM: Add access handler for PMOVSSET and PMOVSCLR register")
Link: https://github.com/ARM-software/sbsa-acs/blob/master/test_pool/pmu/operating_system/test_pmu001.c
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
[ oliver: massaged changelog ]
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20241120005230.2335682-2-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 340fd66c856651d8c1d29f392dd26ad674d2db0e ]
Commit be2881824ae9 ("arm64/build: Assert for unwanted sections")
introduced an assertion to ensure that the .data.rel.ro section does
not exist.
However, this check does not work when CONFIG_LTO_CLANG is enabled,
because .data.rel.ro matches the .data.[0-9a-zA-Z_]* pattern in the
DATA_MAIN macro.
Move the ASSERT() above the RW_DATA() line.
Fixes: be2881824ae9 ("arm64/build: Assert for unwanted sections")
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241106161843.189927-1-masahiroy@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5baf8b037debf4ec60108ccfeccb8636d1dbad81 ]
Currently MTE is permitted in two circumstances (desiring to use MTE
having been specified by the VM_MTE flag) - where MAP_ANONYMOUS is
specified, as checked by arch_calc_vm_flag_bits() and actualised by
setting the VM_MTE_ALLOWED flag, or if the file backing the mapping is
shmem, in which case we set VM_MTE_ALLOWED in shmem_mmap() when the mmap
hook is activated in mmap_region().
The function that checks that, if VM_MTE is set, VM_MTE_ALLOWED is also
set is the arm64 implementation of arch_validate_flags().
Unfortunately, we intend to refactor mmap_region() to perform this check
earlier, meaning that in the case of a shmem backing we will not have
invoked shmem_mmap() yet, causing the mapping to fail spuriously.
It is inappropriate to set this architecture-specific flag in general mm
code anyway, so a sensible resolution of this issue is to instead move the
check somewhere else.
We resolve this by setting VM_MTE_ALLOWED much earlier in do_mmap(), via
the arch_calc_vm_flag_bits() call.
This is an appropriate place to do this as we already check for the
MAP_ANONYMOUS case here, and the shmem file case is simply a variant of
the same idea - we permit RAM-backed memory.
This requires a modification to the arch_calc_vm_flag_bits() signature to
pass in a pointer to the struct file associated with the mapping, however
this is not too egregious as this is only used by two architectures anyway
- arm64 and parisc.
So this patch performs this adjustment and removes the unnecessary
assignment of VM_MTE_ALLOWED in shmem_mmap().
[akpm@linux-foundation.org: fix whitespace, per Catalin]
Link: https://lkml.kernel.org/r/ec251b20ba1964fb64cf1607d2ad80c47f3873df.1730224667.git.lorenzo.stoakes@oracle.com
Fixes: deb0f6562884 ("mm/mmap: undo ->mmap() when arch_validate_flags() fails")
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Jann Horn <jannh@google.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Helge Deller <deller@gmx.de>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Will Deacon <will@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Stack mapping entropy is currently hard-wired to 11 bits of entropy on
32-bit and 18 bits of entropy on 64-bit. The stack itself gains an extra
8 bits of entropy from lower bit randomization within 16 byte alignment
constraints. The argument block could have all lower bits randomized but
it currently only gets the mapping randomization.
Rather than hard-wiring values this switches to using the mmap entropy
configuration like the mmap base and executable base, resulting in a
range of 8 to 16 bits on 32-bit and 18 to 24 bits on 64-bit (with 4k
pages and 3 level page tables) depending on kernel configuration and
overridable via the sysctl entries.
It's worth noting that since these kernel configuration options default
to the minimum supported entropy value, the entropy on 32-bit will drop
from 11 to 8 bits for builds using the defaults. However, following the
configuration seems like the right thing to do regardless. At the very
least, changing the defaults for COMPAT (32-bit processes on 64-bit)
should be considered due to the larger address space compared to real
32-bit.
Signed-off-by: Daniel Micay <danielmicay@gmail.com>
Signed-off-by: anupritaisno1 <www.anuprita804@gmail.com>