Commit graph

26 commits

Author SHA1 Message Date
Valentin Schneider
69f4b0d9cd sched/fair: Clean up active balance nr_balance_failed trickery
When triggering an active load balance, sd->nr_balance_failed is set to
such a value that any further can_migrate_task() using said sd will ignore
the output of task_hot().

This behaviour makes sense, as active load balance intentionally preempts a
rq's running task to migrate it right away, but this asynchronous write is
a bit shoddy, as the stopper thread might run active_load_balance_cpu_stop
before the sd->nr_balance_failed write either becomes visible to the
stopper's CPU or even happens on the CPU that appended the stopper work.

Add a struct lb_env flag to denote active balancing, and use it in
can_migrate_task(). Remove the sd->nr_balance_failed write that served the
same purpose. Cleanup the LBF_DST_PINNED active balance special case.

Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210407220628.3798191-3-valentin.schneider@arm.com
2024-12-18 12:20:26 +01:00
Aubrey Li
06dc4d7881 sched/fair: Reduce long-tail newly idle balance cost
A long-tail load balance cost is observed on the newly idle path,
this is caused by a race window between the first nr_running check
of the busiest runqueue and its nr_running recheck in detach_tasks.

Before the busiest runqueue is locked, the tasks on the busiest
runqueue could be pulled by other CPUs and nr_running of the busiest
runqueu becomes 1 or even 0 if the running task becomes idle, this
causes detach_tasks breaks with LBF_ALL_PINNED flag set, and triggers
load_balance redo at the same sched_domain level.

In order to find the new busiest sched_group and CPU, load balance will
recompute and update the various load statistics, which eventually leads
to the long-tail load balance cost.

This patch clears LBF_ALL_PINNED flag for this race condition, and hence
reduces the long-tail cost of newly idle balance.

Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/1614154549-116078-1-git-send-email-aubrey.li@intel.com
2024-12-18 12:20:21 +01:00
Barry Song
4d6c2b17f9 sched/fair: Optimize test_idle_cores() for !SMT
update_idle_core() is only done for the case of sched_smt_present.
but test_idle_cores() is done for all machines even those without
SMT.

This can contribute to up 8%+ hackbench performance loss on a
machine like kunpeng 920 which has no SMT. This patch removes the
redundant test_idle_cores() for !SMT machines.

Hackbench is ran with -g {2..14}, for each g it is ran 10 times to get
an average.

  $ numactl -N 0 hackbench -p -T -l 20000 -g $1

The below is the result of hackbench w/ and w/o this patch:

  g=    2      4     6       8      10     12      14
  w/o: 1.8151 3.8499 5.5142 7.2491 9.0340 10.7345 12.0929
  w/ : 1.8428 3.7436 5.4501 6.9522 8.2882  9.9535 11.3367
			    +4.1%  +8.3%  +7.3%   +6.3%

Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20210320221432.924-1-song.bao.hua@hisilicon.com
2024-12-18 12:20:16 +01:00
Vincent Guittot
2cff544d66 sched/fair: Reorder newidle_balance pulled_task tests
Reorder the tests and skip useless ones when no load balance has been
performed and rq lock has not been released.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224133007.28644-6-vincent.guittot@linaro.org
2024-12-18 12:20:06 +01:00
c88287ceb0 Reapply "sysctl: promote several nodes out of CONFIG_SCHED_DEBUG"
This reverts commit ea96a0db96.
2024-12-18 11:25:07 +01:00
febb7ecbd1 Revert "sysctl: promote several nodes out of CONFIG_SCHED_DEBUG"
This reverts commit 26944181d5.
2024-12-18 11:09:28 +01:00
8ce8f6324e Revert "fs,kernel,mm: tune to Ktweak balance"
This reverts commit 50e7a3b302.
2024-12-18 11:09:11 +01:00
ea96a0db96 Revert "sysctl: promote several nodes out of CONFIG_SCHED_DEBUG"
This reverts commit 26944181d5.
2024-12-18 00:17:01 +01:00
825fa0d2ea Revert "sched/fair: apply init protection"
This reverts commit 1811b5b3e5.
2024-12-17 21:14:50 +01:00
15afa770f5 Revert "fs,kernel,mm: tune to Ktweak balance"
This reverts commit 50e7a3b302.
2024-12-17 20:58:55 +01:00
Nahuel Gómez
50e7a3b302 fs,kernel,mm: tune to Ktweak balance
Signed-off-by: Nahuel Gómez <nahuelgomez329@gmail.com>
2024-12-17 20:30:06 +01:00
Nahuel Gómez
1811b5b3e5 sched/fair: apply init protection
Signed-off-by: Nahuel Gómez <nahuelgomez329@gmail.com>
2024-12-17 20:28:06 +01:00
Park Ju Hyung
26944181d5 sysctl: promote several nodes out of CONFIG_SCHED_DEBUG
These are used in Android.
Promote these to disable CONFIG_SCHED_DEBUG.

Signed-off-by: Park Ju Hyung <qkrwngud825@gmail.com>
[0ctobot: Adapted for 4.19]
Signed-off-by: Adam W. Willis <return.of.octobot@gmail.com>
Change-Id: I8053176882e155926769939de15da375e7d548a0
2024-12-17 20:27:04 +01:00
K Prateek Nayak
d4d43810f2 sched/fair: Check idle_cpu() before need_resched() to detect ilb CPU turning busy
[ Upstream commit ff47a0acfcce309cf9e175149c75614491953c8f ]

Commit b2a02fc43a1f ("smp: Optimize send_call_function_single_ipi()")
optimizes IPIs to idle CPUs in TIF_POLLING_NRFLAG mode by setting the
TIF_NEED_RESCHED flag in idle task's thread info and relying on
flush_smp_call_function_queue() in idle exit path to run the
call-function. A softirq raised by the call-function is handled shortly
after in do_softirq_post_smp_call_flush() but the TIF_NEED_RESCHED flag
remains set and is only cleared later when schedule_idle() calls
__schedule().

need_resched() check in _nohz_idle_balance() exists to bail out of load
balancing if another task has woken up on the CPU currently in-charge of
idle load balancing which is being processed in SCHED_SOFTIRQ context.
Since the optimization mentioned above overloads the interpretation of
TIF_NEED_RESCHED, check for idle_cpu() before going with the existing
need_resched() check which can catch a genuine task wakeup on an idle
CPU processing SCHED_SOFTIRQ from do_softirq_post_smp_call_flush(), as
well as the case where ksoftirqd needs to be preempted as a result of
new task wakeup or slice expiry.

In case of PREEMPT_RT or threadirqs, although the idle load balancing
may be inhibited in some cases on the ilb CPU, the fact that ksoftirqd
is the only fair task going back to sleep will trigger a newidle balance
on the CPU which will alleviate some imbalance if it exists if idle
balance fails to do so.

Fixes: b2a02fc43a1f ("smp: Optimize send_call_function_single_ipi()")
Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241119054432.6405-4-kprateek.nayak@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-12-17 13:24:33 +01:00
Valentin Schneider
8a8ef40c42 sched/fair: Add NOHZ balancer flag for nohz.next_balance updates
[ Upstream commit efd984c481abb516fab8bafb25bf41fd9397a43c ]

A following patch will trigger NOHZ idle balances as a means to update
nohz.next_balance. Vincent noted that blocked load updates can have
non-negligible overhead, which should be avoided if the intent is to only
update nohz.next_balance.

Add a new NOHZ balance kick flag, NOHZ_NEXT_KICK. Gate NOHZ blocked load
update by the presence of NOHZ_STATS_KICK - currently all NOHZ balance
kicks will have the NOHZ_STATS_KICK flag set, so no change in behaviour is
expected.

Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210823111700.2842997-2-valentin.schneider@arm.com
Stable-dep-of: ff47a0acfcce ("sched/fair: Check idle_cpu() before need_resched() to detect ilb CPU turning busy")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-12-17 13:24:33 +01:00
Vincent Guittot
ab620a407a sched/fair: Trigger the update of blocked load on newly idle cpu
[ Upstream commit c6f886546cb8a38617cdbe755fe50d3acd2463e4 ]

Instead of waking up a random and already idle CPU, we can take advantage
of this_cpu being about to enter idle to run the ILB and update the
blocked load.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224133007.28644-7-vincent.guittot@linaro.org
Stable-dep-of: ff47a0acfcce ("sched/fair: Check idle_cpu() before need_resched() to detect ilb CPU turning busy")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-12-17 13:24:33 +01:00
Vincent Guittot
9ae9714a14 sched/fair: Merge for each idle cpu loop of ILB
[ Upstream commit 7a82e5f52a3506bc35a4dc04d53ad2c9daf82e7f ]

Remove the specific case for handling this_cpu outside for_each_cpu() loop
when running ILB. Instead we use for_each_cpu_wrap() and start with the
next cpu after this_cpu so we will continue to finish with this_cpu.

update_nohz_stats() is now used for this_cpu too and will prevents
unnecessary update. We don't need a special case for handling the update of
nohz.next_balance for this_cpu anymore because it is now handled by the
loop like others.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224133007.28644-5-vincent.guittot@linaro.org
Stable-dep-of: ff47a0acfcce ("sched/fair: Check idle_cpu() before need_resched() to detect ilb CPU turning busy")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-12-17 13:24:33 +01:00
Vincent Guittot
4ae526c326 sched/fair: Remove unused parameter of update_nohz_stats
[ Upstream commit 64f84f273592d17dcdca20244168ad9f525a39c3 ]

idle load balance is the only user of update_nohz_stats and doesn't use
force parameter. Remove it

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224133007.28644-4-vincent.guittot@linaro.org
Stable-dep-of: ff47a0acfcce ("sched/fair: Check idle_cpu() before need_resched() to detect ilb CPU turning busy")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-12-17 13:24:33 +01:00
Vincent Guittot
fe0cdb4e3f sched/fair: Remove update of blocked load from newidle_balance
[ Upstream commit 0826530de3cbdc89e60a89e86def94a5f0fc81ca ]

newidle_balance runs with both preempt and irq disabled which prevent
local irq to run during this period. The duration for updating the
blocked load of CPUs varies according to the number of CPU cgroups
with non-decayed load and extends this critical period to an uncontrolled
level.

Remove the update from newidle_balance and trigger a normal ILB that
will take care of the update instead.

This reduces the IRQ latency from O(nr_cgroups * nr_nohz_cpus) to
O(nr_cgroups).

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224133007.28644-2-vincent.guittot@linaro.org
Stable-dep-of: ff47a0acfcce ("sched/fair: Check idle_cpu() before need_resched() to detect ilb CPU turning busy")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-12-17 13:24:33 +01:00
Pierre Gondois
da0a9d1d3a sched/fair: Use all little CPUs for CPU-bound workloads
commit 3af7524b14198f5159a86692d57a9f28ec9375ce upstream.

Running N CPU-bound tasks on an N CPUs platform:

- with asymmetric CPU capacity

- not being a DynamIq system (i.e. having a PKG level sched domain
  without the SD_SHARE_PKG_RESOURCES flag set)

.. might result in a task placement where two tasks run on a big CPU
and none on a little CPU. This placement could be more optimal by
using all CPUs.

Testing platform:

  Juno-r2:
    - 2 big CPUs (1-2), maximum capacity of 1024
    - 4 little CPUs (0,3-5), maximum capacity of 383

Testing workload ([1]):

  Spawn 6 CPU-bound tasks. During the first 100ms (step 1), each tasks
  is affine to a CPU, except for:

    - one little CPU which is left idle.
    - one big CPU which has 2 tasks affine.

  After the 100ms (step 2), remove the cpumask affinity.

Behavior before the patch:

  During step 2, the load balancer running from the idle CPU tags sched
  domains as:

  - little CPUs: 'group_has_spare'. Cf. group_has_capacity() and
    group_is_overloaded(), 3 CPU-bound tasks run on a 4 CPUs
    sched-domain, and the idle CPU provides enough spare capacity
    regarding the imbalance_pct

  - big CPUs: 'group_overloaded'. Indeed, 3 tasks run on a 2 CPUs
    sched-domain, so the following path is used:

      group_is_overloaded()
      \-if (sgs->sum_nr_running <= sgs->group_weight) return true;

    The following path which would change the migration type to
    'migrate_task' is not taken:

      calculate_imbalance()
      \-if (env->idle != CPU_NOT_IDLE && env->imbalance == 0)

    as the local group has some spare capacity, so the imbalance
    is not 0.

  The migration type requested is 'migrate_util' and the busiest
  runqueue is the big CPU's runqueue having 2 tasks (each having a
  utilization of 512). The idle little CPU cannot pull one of these
  task as its capacity is too small for the task. The following path
  is used:

   detach_tasks()
   \-case migrate_util:
     \-if (util > env->imbalance) goto next;

After the patch:

As the number of failed balancing attempts grows (with
'nr_balance_failed'), progressively make it easier to migrate
a big task to the idling little CPU. A similar mechanism is
used for the 'migrate_load' migration type.

Improvement:

Running the testing workload [1] with the step 2 representing
a ~10s load for a big CPU:

  Before patch: ~19.3s
  After patch:  ~18s (-6.7%)

Similar issue reported at:

  https://lore.kernel.org/lkml/20230716014125.139577-1-qyousef@layalina.io/

Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Pierre Gondois <pierre.gondois@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Qais Yousef <qyousef@layalina.io>
Link: https://lore.kernel.org/r/20231206090043.634697-1-pierre.gondois@arm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-11-23 23:20:13 +01:00
Tejun Heo
799aef6e9d sched/fair: set_load_weight() must also call reweight_task() for SCHED_IDLE tasks
commit d329605287020c3d1c3b0dadc63d8208e7251382 upstream.

When a task's weight is being changed, set_load_weight() is called with
@update_load set. As weight changes aren't trivial for the fair class,
set_load_weight() calls fair.c::reweight_task() for fair class tasks.

However, set_load_weight() first tests task_has_idle_policy() on entry and
skips calling reweight_task() for SCHED_IDLE tasks. This is buggy as
SCHED_IDLE tasks are just fair tasks with a very low weight and they would
incorrectly skip load, vlag and position updates.

Fix it by updating reweight_task() to take struct load_weight as idle weight
can't be expressed with prio and making set_load_weight() call
reweight_task() for SCHED_IDLE tasks too when @update_load is set.

Fixes: 9059393e4ec1 ("sched/fair: Use reweight_entity() for set_user_nice()")
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org # v4.15+
Link: http://lkml.kernel.org/r/20240624102331.GI31592@noisy.programming.kicks-ass.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-11-23 23:20:12 +01:00
friedrich420
5afb8f94f1 Kernel/sched: Reduce Latency [Pafcholini]
Signed-off-by: HolyAngel <slverwolf@gmail.com>
Signed-off-by: Salllz <sal235222727@gmail.com>
Signed-off-by: alanndz <alanndz7@gmail.com>
Signed-off-by: Cyber Knight <cyberknight755@gmail.com>
Signed-off-by: Little-W <1405481963@qq.com>
2024-11-19 18:05:31 +01:00
Sultan Alsawaf
419052d8e5 sched/fair: Compile out NUMA code entirely when NUMA is disabled
Scheduler code is very hot and every little optimization counts. Instead
of constantly checking sched_numa_balancing when NUMA is disabled,
compile it out.

Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
2024-11-19 18:05:24 +01:00
Clement Courbet
d4b05cdad5 sched: Optimize __calc_delta()
A significant portion of __calc_delta() time is spent in the loop
shifting a u64 by 32 bits. Use `fls` instead of iterating.

This is ~7x faster on benchmarks.

The generic `fls` implementation (`generic_fls`) is still ~4x faster
than the loop.
Architectures that have a better implementation will make use of it. For
example, on x86 we get an additional factor 2 in speed without dedicated
implementation.

On GCC, the asm versions of `fls` are about the same speed as the
builtin. On Clang, the versions that use fls are more than twice as
slow as the builtin. This is because the way the `fls` function is
written, clang puts the value in memory:
https://godbolt.org/z/EfMbYe. This bug is filed at
https://bugs.llvm.org/show_bug.cgi?idI406.

```
name                                   cpu/op
BM_Calc<__calc_delta_loop>             9.57ms Â=B112%
BM_Calc<__calc_delta_generic_fls>      2.36ms Â=B113%
BM_Calc<__calc_delta_asm_fls>          2.45ms Â=B113%
BM_Calc<__calc_delta_asm_fls_nomem>    1.66ms Â=B112%
BM_Calc<__calc_delta_asm_fls64>        2.46ms Â=B113%
BM_Calc<__calc_delta_asm_fls64_nomem>  1.34ms Â=B115%
BM_Calc<__calc_delta_builtin>          1.32ms Â=B111%
```

Signed-off-by: Clement Courbet <courbet@google.com>
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210303224653.2579656-1-joshdon@google.com
2024-11-19 18:05:19 +01:00
Sultan Alsawaf
fa6b06bf46 sched/fair: Always update CPU capacity when load balancing
Limiting CPU capacity updates, which are quite cheap, results in worse
balancing decisions during opportunistic balancing (e.g., SD_BALANCE_WAKE).
This causes opportunistic placement decisions to be skewed using stale CPU
capacity data, and when a CPU isn't idling much, its capacity suffers from
even more staleness since the only exception to the 100 ms capacity update
ratelimit is a CPU exiting idle.

Since the capacity updates are cheap, always do it when load balancing in
order to improve opportunistic task placement decisions.

Change-Id: If1d451ce742fd093010057e31e71012d47fad70a
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
2024-11-19 17:34:49 +01:00
Gabriel2392
7ed7ee9edf Import A536BXXU9EXDC 2024-06-15 16:02:09 -03:00