commit 43fb862de8f628c5db5e96831c915b9aebf62d33 upstream.
During VMentry VERW is executed to mitigate MDS. After VERW, any memory
access like register push onto stack may put host data in MDS affected
CPU buffers. A guest can then use MDS to sample host data.
Although likelihood of secrets surviving in registers at current VERW
callsite is less, but it can't be ruled out. Harden the MDS mitigation
by moving the VERW mitigation late in VMentry path.
Note that VERW for MMIO Stale Data mitigation is unchanged because of
the complexity of per-guest conditional VERW which is not easy to handle
that late in asm with no GPRs available. If the CPU is also affected by
MDS, VERW is unconditionally executed late in asm regardless of guest
having MMIO access.
[ pawan: conflict resolved in backport ]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/all/20240213-delay-verw-v8-6-a6216d83edb7%40linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
From: Sean Christopherson <seanjc@google.com>
commit 706a189dcf74d3b3f955e9384785e726ed6c7c80 upstream.
Use EFLAGS.CF instead of EFLAGS.ZF to track whether to use VMRESUME versus
VMLAUNCH. Freeing up EFLAGS.ZF will allow doing VERW, which clobbers ZF,
for MDS mitigations as late as possible without needing to duplicate VERW
for both paths.
[ pawan: resolved merge conflict in __vmx_vcpu_run in backport. ]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/all/20240213-delay-verw-v8-5-a6216d83edb7%40linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>