[ Upstream commit d721def7392a7348ffb9f3583b264239cbd3702c ]
Making kallsyms_on_each_symbol generally available, so it can be
used outside CONFIG_LIVEPATCH option in following changes.
Rather than adding another ifdef option let's make the function
generally available (when CONFIG_KALLSYMS option is defined).
Cc: Christoph Hellwig <hch@lst.de>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20220510122616.2652285-2-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Stable-dep-of: b022f0c7e404 ("tracing/kprobes: Return EADDRNOTAVAIL when
func matches several symbols")
Signed-off-by: Sherry Yang <sherry.yang@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0b18c852cc6fb8284ac0ab97e3e840974a6a8a64 ]
The saved_cmdlines have three arrays for mapping PIDs to COMMs:
- map_pid_to_cmdline[]
- map_cmdline_to_pid[]
- saved_cmdlines
The map_pid_to_cmdline[] is PID_MAX_DEFAULT in size and holds the index
into the other arrays. The map_cmdline_to_pid[] is a mapping back to the
full pid as it can be larger than PID_MAX_DEFAULT. And the
saved_cmdlines[] just holds the COMMs associated to the pids.
Currently the map_pid_to_cmdline[] and saved_cmdlines[] are allocated
together (in reality the saved_cmdlines is just in the memory of the
rounding of the allocation of the structure as it is always allocated in
powers of two). The map_cmdline_to_pid[] array is allocated separately.
Since the rounding to a power of two is rather large (it allows for 8000
elements in saved_cmdlines), also include the map_cmdline_to_pid[] array.
(This drops it to 6000 by default, which is still plenty for most use
cases). This saves even more memory as the map_cmdline_to_pid[] array
doesn't need to be allocated.
Link: https://lore.kernel.org/linux-trace-kernel/20240212174011.068211d9@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.182330529@goodmis.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes: 44dc5c41b5b1 ("tracing: Fix wasted memory in saved_cmdlines logic")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5efd3e2aef91d2d812290dcb25b2058e6f3f532c ]
This reverts 60be76eeabb3d ("tracing: Add size check when printing
trace_marker output"). The only reason the precision check was added
was because of a bug that miscalculated the write size of the string into
the ring buffer and it truncated it removing the terminating nul byte. On
reading the trace it crashed the kernel. But this was due to the bug in
the code that happened during development and should never happen in
practice. If anything, the precision can hide bugs where the string in the
ring buffer isn't nul terminated and it will not be checked.
Link: https://lore.kernel.org/all/C7E7AF1A-D30F-4D18-B8E5-AF1EF58004F5@linux.ibm.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240227125706.04279ac2@gandalf.local.home
Link: https://lore.kernel.org/all/20240302111244.3a1674be@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20240304174341.2a561d9f@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Fixes: 60be76eeabb3d ("tracing: Add size check when printing trace_marker output")
Reported-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 34820304cc2cd1804ee1f8f3504ec77813d29c8e upstream.
xol_add_vma() maps the uninitialized page allocated by __create_xol_area()
into userspace. On some architectures (x86) this memory is readable even
without VM_READ, VM_EXEC results in the same pgprot_t as VM_EXEC|VM_READ,
although this doesn't really matter, debugger can read this memory anyway.
Link: https://lore.kernel.org/all/20240929162047.GA12611@redhat.com/
Reported-by: Will Deacon <will@kernel.org>
Fixes: d4b3b6384f98 ("uprobes/core: Allocate XOL slots for uprobes use")
Cc: stable@vger.kernel.org
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 62c0b1061593d7012292f781f11145b2d46f43ab upstream.
In perf_adjust_period, we will first calculate period, and then use
this period to calculate delta. However, when delta is less than 0,
there will be a deviation compared to when delta is greater than or
equal to 0. For example, when delta is in the range of [-14,-1], the
range of delta = delta + 7 is between [-7,6], so the final value of
delta/8 is 0. Therefore, the impact of -1 and -2 will be ignored.
This is unacceptable when the target period is very short, because
we will lose a lot of samples.
Here are some tests and analyzes:
before:
# perf record -e cs -F 1000 ./a.out
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.022 MB perf.data (518 samples) ]
# perf script
...
a.out 396 257.956048: 23 cs: ffffffff81f4eeec schedul>
a.out 396 257.957891: 23 cs: ffffffff81f4eeec schedul>
a.out 396 257.959730: 23 cs: ffffffff81f4eeec schedul>
a.out 396 257.961545: 23 cs: ffffffff81f4eeec schedul>
a.out 396 257.963355: 23 cs: ffffffff81f4eeec schedul>
a.out 396 257.965163: 23 cs: ffffffff81f4eeec schedul>
a.out 396 257.966973: 23 cs: ffffffff81f4eeec schedul>
a.out 396 257.968785: 23 cs: ffffffff81f4eeec schedul>
a.out 396 257.970593: 23 cs: ffffffff81f4eeec schedul>
...
after:
# perf record -e cs -F 1000 ./a.out
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.058 MB perf.data (1466 samples) ]
# perf script
...
a.out 395 59.338813: 11 cs: ffffffff81f4eeec schedul>
a.out 395 59.339707: 12 cs: ffffffff81f4eeec schedul>
a.out 395 59.340682: 13 cs: ffffffff81f4eeec schedul>
a.out 395 59.341751: 13 cs: ffffffff81f4eeec schedul>
a.out 395 59.342799: 12 cs: ffffffff81f4eeec schedul>
a.out 395 59.343765: 11 cs: ffffffff81f4eeec schedul>
a.out 395 59.344651: 11 cs: ffffffff81f4eeec schedul>
a.out 395 59.345539: 12 cs: ffffffff81f4eeec schedul>
a.out 395 59.346502: 13 cs: ffffffff81f4eeec schedul>
...
test.c
int main() {
for (int i = 0; i < 20000; i++)
usleep(10);
return 0;
}
# time ./a.out
real 0m1.583s
user 0m0.040s
sys 0m0.298s
The above results were tested on x86-64 qemu with KVM enabled using
test.c as test program. Ideally, we should have around 1500 samples,
but the previous algorithm had only about 500, whereas the modified
algorithm now has about 1400. Further more, the new version shows 1
sample per 0.001s, while the previous one is 1 sample per 0.002s.This
indicates that the new algorithm is more sensitive to small negative
values compared to old algorithm.
Fixes: bd2b5b12849a ("perf_counter: More aggressive frequency adjustment")
Signed-off-by: Luo Gengkun <luogengkun@huaweicloud.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Adrian Hunter <adrian.hunter@intel.com>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20240831074316.2106159-2-luogengkun@huaweicloud.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 11377947b5861fa59bf77c827e1dd7c081842cc9 ]
Currently, if the rcuscale module's async module parameter is specified
for RCU implementations that do not have async primitives such as RCU
Tasks Rude (which now lacks a call_rcu_tasks_rude() function), there
will be a series of splats due to calls to a NULL pointer. This commit
therefore warns of this situation, but switches to non-async testing.
Signed-off-by: "Paul E. McKenney" <paulmck@kernel.org>
Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 9a22b2812393d93d84358a760c347c21939029a6 upstream.
When submitting more than 2^32 padata objects to padata_do_serial, the
current sorting implementation incorrectly sorts padata objects with
overflowed seq_nr, causing them to be placed before existing objects in
the reorder list. This leads to a deadlock in the serialization process
as padata_find_next cannot match padata->seq_nr and pd->processed
because the padata instance with overflowed seq_nr will be selected
next.
To fix this, we use an unsigned integer wrap around to correctly sort
padata objects in scenarios with integer overflow.
Fixes: bfde23ce200e ("padata: unbind parallel jobs from specific CPUs")
Cc: <stable@vger.kernel.org>
Co-developed-by: Christian Gafert <christian.gafert@rohde-schwarz.com>
Signed-off-by: Christian Gafert <christian.gafert@rohde-schwarz.com>
Co-developed-by: Max Ferger <max.ferger@rohde-schwarz.com>
Signed-off-by: Max Ferger <max.ferger@rohde-schwarz.com>
Signed-off-by: Van Giang Nguyen <vangiang.nguyen@rohde-schwarz.com>
Acked-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 281d464a34f540de166cee74b723e97ac2515ec3 ]
The devmap code allocates a number hash buckets equal to the next power
of two of the max_entries value provided when creating the map. When
rounding up to the next power of two, the 32-bit variable storing the
number of buckets can overflow, and the code checks for overflow by
checking if the truncated 32-bit value is equal to 0. However, on 32-bit
arches the rounding up itself can overflow mid-way through, because it
ends up doing a left-shift of 32 bits on an unsigned long value. If the
size of an unsigned long is four bytes, this is undefined behaviour, so
there is no guarantee that we'll end up with a nice and tidy 0-value at
the end.
Syzbot managed to turn this into a crash on arm32 by creating a
DEVMAP_HASH with max_entries > 0x80000000 and then trying to update it.
Fix this by moving the overflow check to before the rounding up
operation.
Fixes: 6f9d451ab1a3 ("xdp: Add devmap_hash map type for looking up devices by hashed index")
Link: https://lore.kernel.org/r/000000000000ed666a0611af6818@google.com
Reported-and-tested-by: syzbot+8cd36f6b65f3cafd400a@syzkaller.appspotmail.com
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Message-ID: <20240307120340.99577-2-toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Pu Lehui <pulehui@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This reverts commit 70294d8bc31f3b7789e5e32f757aa9344556d964 which is
commit 844f157f6c0a905d039d2e20212ab3231f2e5eaf upstream.
Commit 70294d8bc31f ("bpf: Eliminate rlimit-based memory accounting for
devmap maps") is part of the v5.11+ base mechanism of memcg-based memory
accounting[0]. The commit cannot be independently backported to the 5.10
stable branch, otherwise the related memory when creating devmap will be
unrestricted. Let's roll back to rlimit-based memory accounting mode for
devmap.
Link: https://lore.kernel.org/bpf/20201201215900.3569844-1-guro@fb.com [0]
Signed-off-by: Pu Lehui <pulehui@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This reverts commit 225da02acdc97af01b6bc6ce1a3e5362bf01d3fb which is
commit 281d464a34f540de166cee74b723e97ac2515ec3 upstream.
Commit 225da02acdc9 ("bpf: fix DEVMAP_HASH overflow check on 32-bit
architectures") relies on the v5.11+ base mechanism of memcg-based
memory accounting[0], which is not yet supported on the 5.10 stable
branch, so let's revert this commit in preparation for re-adapting it.
Link: https://lore.kernel.org/bpf/20201201215900.3569844-1-guro@fb.com [0]
Signed-off-by: Pu Lehui <pulehui@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit cfe69c50b05510b24e26ccb427c7cc70beafd6c1 ]
The bpf_strtol() and bpf_strtoul() helpers are currently broken on 32bit:
The argument type ARG_PTR_TO_LONG is BPF-side "long", not kernel-side "long"
and therefore always considered fixed 64bit no matter if 64 or 32bit underlying
architecture.
This contract breaks in case of the two mentioned helpers since their BPF_CALL
definition for the helpers was added with {unsigned,}long *res. Meaning, the
transition from BPF-side "long" (BPF program) to kernel-side "long" (BPF helper)
breaks here.
Both helpers call __bpf_strtoll() with "long long" correctly, but later assigning
the result into 32-bit "*(long *)" on 32bit architectures. From a BPF program
point of view, this means upper bits will be seen as uninitialised.
Therefore, fix both BPF_CALL signatures to {s,u}64 types to fix this situation.
Now, changing also uapi/bpf.h helper documentation which generates bpf_helper_defs.h
for BPF programs is tricky: Changing signatures there to __{s,u}64 would trigger
compiler warnings (incompatible pointer types passing 'long *' to parameter of type
'__s64 *' (aka 'long long *')) for existing BPF programs.
Leaving the signatures as-is would be fine as from BPF program point of view it is
still BPF-side "long" and thus equivalent to __{s,u}64 on 64 or 32bit underlying
architectures.
Note that bpf_strtol() and bpf_strtoul() are the only helpers with this issue.
Fixes: d7a4cb9b6705 ("bpf: Introduce bpf_strtol and bpf_strtoul helpers")
Reported-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/481fcec8-c12c-9abb-8ecb-76c71c009959@iogearbox.net
Link: https://lore.kernel.org/r/20240913191754.13290-1-daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e16c7b07784f3fb03025939c4590b9a7c64970a7 ]
When analyzing a kernel waring message, Peter pointed out that there is a
race condition when the kworker is being frozen and falls into
try_to_freeze() with TASK_INTERRUPTIBLE, which could trigger a
might_sleep() warning in try_to_freeze(). Although the root cause is not
related to freeze()[1], it is still worthy to fix this issue ahead.
One possible race scenario:
CPU 0 CPU 1
----- -----
// kthread_worker_fn
set_current_state(TASK_INTERRUPTIBLE);
suspend_freeze_processes()
freeze_processes
static_branch_inc(&freezer_active);
freeze_kernel_threads
pm_nosig_freezing = true;
if (work) { //false
__set_current_state(TASK_RUNNING);
} else if (!freezing(current)) //false, been frozen
freezing():
if (static_branch_unlikely(&freezer_active))
if (pm_nosig_freezing)
return true;
schedule()
}
// state is still TASK_INTERRUPTIBLE
try_to_freeze()
might_sleep() <--- warning
Fix this by explicitly set the TASK_RUNNING before entering
try_to_freeze().
Link: https://lore.kernel.org/lkml/Zs2ZoAcUsZMX2B%2FI@chenyu5-mobl2/ [1]
Link: https://lkml.kernel.org/r/20240827112308.181081-1-yu.c.chen@intel.com
Fixes: b56c0d8937e6 ("kthread: implement kthread_worker")
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: David Gow <davidgow@google.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Mickaël Salaün <mic@digikod.net>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f630c7c6f10546ebff15c3a856e7949feb7a2372 ]
While migrating some code from wq to kthread_worker, I found that I missed
the execute_start/end tracepoints. So add similar tracepoints for
kthread_work. And for completeness, queue_work tracepoint (although this
one differs slightly from the matching workqueue tracepoint).
Link: https://lkml.kernel.org/r/20201010180323.126634-1-robdclark@gmail.com
Signed-off-by: Rob Clark <robdclark@chromium.org>
Cc: Rob Clark <robdclark@chromium.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Phil Auld <pauld@redhat.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Thara Gopinath <thara.gopinath@linaro.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Vincent Donnefort <vincent.donnefort@arm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Ilias Stamatis <stamatis.iliass@gmail.com>
Cc: Liang Chen <cl@rock-chips.com>
Cc: Ben Dooks <ben.dooks@codethink.co.uk>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "J. Bruce Fields" <bfields@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Stable-dep-of: e16c7b07784f ("kthread: fix task state in kthread worker if being frozen")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 24cc57d8faaa4060fd58adf810b858fcfb71a02f ]
In the case where we are forcing the ps.chunk_size to be at least 1,
we are ignoring the caller's alignment.
Move the forcing of ps.chunk_size to be at least 1 before rounding it
up to caller's alignment, so that caller's alignment is honored.
While at it, use max() to force the ps.chunk_size to be at least 1 to
improve readability.
Fixes: 6d45e1c948a8 ("padata: Fix possible divide-by-0 panic in padata_mt_helper()")
Signed-off-by: Kamlesh Gurudasani <kamlesh@ti.com>
Acked-by: Waiman Long <longman@redhat.com>
Acked-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit e60b613df8b6253def41215402f72986fee3fc8d upstream.
KASAN reports a bug:
BUG: KASAN: use-after-free in ftrace_location+0x90/0x120
Read of size 8 at addr ffff888141d40010 by task insmod/424
CPU: 8 PID: 424 Comm: insmod Tainted: G W 6.9.0-rc2+
[...]
Call Trace:
<TASK>
dump_stack_lvl+0x68/0xa0
print_report+0xcf/0x610
kasan_report+0xb5/0xe0
ftrace_location+0x90/0x120
register_kprobe+0x14b/0xa40
kprobe_init+0x2d/0xff0 [kprobe_example]
do_one_initcall+0x8f/0x2d0
do_init_module+0x13a/0x3c0
load_module+0x3082/0x33d0
init_module_from_file+0xd2/0x130
__x64_sys_finit_module+0x306/0x440
do_syscall_64+0x68/0x140
entry_SYSCALL_64_after_hwframe+0x71/0x79
The root cause is that, in lookup_rec(), ftrace record of some address
is being searched in ftrace pages of some module, but those ftrace pages
at the same time is being freed in ftrace_release_mod() as the
corresponding module is being deleted:
CPU1 | CPU2
register_kprobes() { | delete_module() {
check_kprobe_address_safe() { |
arch_check_ftrace_location() { |
ftrace_location() { |
lookup_rec() // USE! | ftrace_release_mod() // Free!
To fix this issue:
1. Hold rcu lock as accessing ftrace pages in ftrace_location_range();
2. Use ftrace_location_range() instead of lookup_rec() in
ftrace_location();
3. Call synchronize_rcu() before freeing any ftrace pages both in
ftrace_process_locs()/ftrace_release_mod()/ftrace_free_mem().
Link: https://lore.kernel.org/linux-trace-kernel/20240509192859.1273558-1-zhengyejian1@huawei.com
Cc: stable@vger.kernel.org
Cc: <mhiramat@kernel.org>
Cc: <mark.rutland@arm.com>
Cc: <mathieu.desnoyers@efficios.com>
Fixes: ae6aa16fdc16 ("kprobes: introduce ftrace based optimization")
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
[Shivani: Modified to apply on v5.10.y]
Signed-off-by: Shivani Agarwal <shivani.agarwal@broadcom.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit aebfd12521d9c7d0b502cf6d06314cfbcdccfe3b upstream.
Currently a lot of ftrace code assumes __fentry__ is at sym+0. However
with Intel IBT enabled the first instruction of a function will most
likely be ENDBR.
Change ftrace_location() to not only return the __fentry__ location
when called for the __fentry__ location, but also when called for the
sym+0 location.
Then audit/update all callsites of this function to consistently use
these new semantics.
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20220308154318.227581603@infradead.org
Stable-dep-of: e60b613df8b6 ("ftrace: Fix possible use-after-free issue in ftrace_location()")
[Shivani: Modified to apply on v5.10.y]
Signed-off-by: Shivani Agarwal <shivani.agarwal@broadcom.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit d23b5c577715892c87533b13923306acc6243f93 ]
At present, when we perform operations on the cgroup root_list, we must
hold the cgroup_mutex, which is a relatively heavyweight lock. In reality,
we can make operations on this list RCU-safe, eliminating the need to hold
the cgroup_mutex during traversal. Modifications to the list only occur in
the cgroup root setup and destroy paths, which should be infrequent in a
production environment. In contrast, traversal may occur frequently.
Therefore, making it RCU-safe would be beneficial.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit d33d26036a0274b472299d7dcdaa5fb34329f91b upstream.
rt_mutex_handle_deadlock() is called with rt_mutex::wait_lock held. In the
good case it returns with the lock held and in the deadlock case it emits a
warning and goes into an endless scheduling loop with the lock held, which
triggers the 'scheduling in atomic' warning.
Unlock rt_mutex::wait_lock in the dead lock case before issuing the warning
and dropping into the schedule for ever loop.
[ tglx: Moved unlock before the WARN(), removed the pointless comment,
massaged changelog, added Fixes tag ]
Fixes: 3d5c9340d194 ("rtmutex: Handle deadlock detection smarter")
Signed-off-by: Roland Xu <mu001999@outlook.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/ME0P300MB063599BEF0743B8FA339C2CECC802@ME0P300MB0635.AUSP300.PROD.OUTLOOK.COM
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2ab9d830262c132ab5db2f571003d80850d56b2a upstream.
Ole reported that event->mmap_mutex is strictly insufficient to
serialize the AUX buffer, add a per RB mutex to fully serialize it.
Note that in the lock order comment the perf_event::mmap_mutex order
was already wrong, that is, it nesting under mmap_lock is not new with
this patch.
Fixes: 45bfb2e50471 ("perf: Add AUX area to ring buffer for raw data streams")
Reported-by: Ole <ole@binarygecko.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 77aeb1b685f9db73d276bad4bb30d48505a6fd23 ]
For CONFIG_DEBUG_OBJECTS_WORK=y kernels sscs.work defined by
INIT_WORK_ONSTACK() is initialized by debug_object_init_on_stack() for
the debug check in __init_work() to work correctly.
But this lacks the counterpart to remove the tracked object from debug
objects again, which will cause a debug object warning once the stack is
freed.
Add the missing destroy_work_on_stack() invocation to cure that.
[ tglx: Massaged changelog ]
Signed-off-by: Zqiang <qiang.zhang1211@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20240704065213.13559-1-qiang.zhang1211@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 57b56d16800e8961278ecff0dc755d46c4575092 ]
The writing of css->cgroup associated with the cgroup root in
rebind_subsystems() is currently protected only by cgroup_mutex.
However, the reading of css->cgroup in both proc_cpuset_show() and
proc_cgroup_show() is protected just by css_set_lock. That makes the
readers susceptible to racing problems like data tearing or caching.
It is also a problem that can be reported by KCSAN.
This can be fixed by using READ_ONCE() and WRITE_ONCE() to access
css->cgroup. Alternatively, the writing of css->cgroup can be moved
under css_set_lock as well which is done by this patch.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 49aa8a1f4d6800721c7971ed383078257f12e8f9 upstream.
In __tracing_open(), when max latency tracers took place on the cpu,
the time start of its buffer would be updated, then event entries with
timestamps being earlier than start of the buffer would be skipped
(see tracing_iter_reset()).
Softlockup will occur if the kernel is non-preemptible and too many
entries were skipped in the loop that reset every cpu buffer, so add
cond_resched() to avoid it.
Cc: stable@vger.kernel.org
Fixes: 2f26ebd549b9a ("tracing: use timestamp to determine start of latency traces")
Link: https://lore.kernel.org/20240827124654.3817443-1-zhengyejian@huaweicloud.com
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian@huaweicloud.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
From: Daniel Borkmann <daniel@iogearbox.net>
commit 78cc316e9583067884eb8bd154301dc1e9ee945c upstream.
If cgroup_sk_alloc() is called from interrupt context, then just assign the
root cgroup to skcd->cgroup. Prior to commit 8520e224f547 ("bpf, cgroups:
Fix cgroup v2 fallback on v1/v2 mixed mode") we would just return, and later
on in sock_cgroup_ptr(), we were NULL-testing the cgroup in fast-path, and
iff indeed NULL returning the root cgroup (v ?: &cgrp_dfl_root.cgrp). Rather
than re-adding the NULL-test to the fast-path we can just assign it once from
cgroup_sk_alloc() given v1/v2 handling has been simplified. The migration from
NULL test with returning &cgrp_dfl_root.cgrp to assigning &cgrp_dfl_root.cgrp
directly does /not/ change behavior for callers of sock_cgroup_ptr().
syzkaller was able to trigger a splat in the legacy netrom code base, where
the RX handler in nr_rx_frame() calls nr_make_new() which calls sk_alloc()
and therefore cgroup_sk_alloc() with in_interrupt() condition. Thus the NULL
skcd->cgroup, where it trips over on cgroup_sk_free() side given it expects
a non-NULL object. There are a few other candidates aside from netrom which
have similar pattern where in their accept-like implementation, they just call
to sk_alloc() and thus cgroup_sk_alloc() instead of sk_clone_lock() with the
corresponding cgroup_sk_clone() which then inherits the cgroup from the parent
socket. None of them are related to core protocols where BPF cgroup programs
are running from. However, in future, they should follow to implement a similar
inheritance mechanism.
Additionally, with a !CONFIG_CGROUP_NET_PRIO and !CONFIG_CGROUP_NET_CLASSID
configuration, the same issue was exposed also prior to 8520e224f547 due to
commit e876ecc67db8 ("cgroup: memcg: net: do not associate sock with unrelated
cgroup") which added the early in_interrupt() return back then.
Fixes: 8520e224f547 ("bpf, cgroups: Fix cgroup v2 fallback on v1/v2 mixed mode")
Fixes: e876ecc67db8 ("cgroup: memcg: net: do not associate sock with unrelated cgroup")
Reported-by: syzbot+df709157a4ecaf192b03@syzkaller.appspotmail.com
Reported-by: syzbot+533f389d4026d86a2a95@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: syzbot+df709157a4ecaf192b03@syzkaller.appspotmail.com
Tested-by: syzbot+533f389d4026d86a2a95@syzkaller.appspotmail.com
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/bpf/20210927123921.21535-1-daniel@iogearbox.net
Signed-off-by: Connor O'Brien <connor.obrien@crowdstrike.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cc5645fddb0ce28492b15520306d092730dffa48 upstream.
There is a possibility of buffer overflow in
show_rcu_tasks_trace_gp_kthread() if counters, passed
to sprintf() are huge. Counter numbers, needed for this
are unrealistically high, but buffer overflow is still
possible.
Use snprintf() with buffer size instead of sprintf().
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Fixes: edf3775f0ad6 ("rcu-tasks: Add count for idle tasks on offline CPUs")
Signed-off-by: Nikita Kiryushin <kiryushin@ancud.ru>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Vamsi Krishna Brahmajosyula <vamsi-krishna.brahmajosyula@broadcom.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
From: Daniel Borkmann <daniel@iogearbox.net>
commit 8520e224f547cd070c7c8f97b1fc6d58cff7ccaa upstream.
Fix cgroup v1 interference when non-root cgroup v2 BPF programs are used.
Back in the days, commit bd1060a1d671 ("sock, cgroup: add sock->sk_cgroup")
embedded per-socket cgroup information into sock->sk_cgrp_data and in order
to save 8 bytes in struct sock made both mutually exclusive, that is, when
cgroup v1 socket tagging (e.g. net_cls/net_prio) is used, then cgroup v2
falls back to the root cgroup in sock_cgroup_ptr() (&cgrp_dfl_root.cgrp).
The assumption made was "there is no reason to mix the two and this is in line
with how legacy and v2 compatibility is handled" as stated in bd1060a1d671.
However, with Kubernetes more widely supporting cgroups v2 as well nowadays,
this assumption no longer holds, and the possibility of the v1/v2 mixed mode
with the v2 root fallback being hit becomes a real security issue.
Many of the cgroup v2 BPF programs are also used for policy enforcement, just
to pick _one_ example, that is, to programmatically deny socket related system
calls like connect(2) or bind(2). A v2 root fallback would implicitly cause
a policy bypass for the affected Pods.
In production environments, we have recently seen this case due to various
circumstances: i) a different 3rd party agent and/or ii) a container runtime
such as [0] in the user's environment configuring legacy cgroup v1 net_cls
tags, which triggered implicitly mentioned root fallback. Another case is
Kubernetes projects like kind [1] which create Kubernetes nodes in a container
and also add cgroup namespaces to the mix, meaning programs which are attached
to the cgroup v2 root of the cgroup namespace get attached to a non-root
cgroup v2 path from init namespace point of view. And the latter's root is
out of reach for agents on a kind Kubernetes node to configure. Meaning, any
entity on the node setting cgroup v1 net_cls tag will trigger the bypass
despite cgroup v2 BPF programs attached to the namespace root.
Generally, this mutual exclusiveness does not hold anymore in today's user
environments and makes cgroup v2 usage from BPF side fragile and unreliable.
This fix adds proper struct cgroup pointer for the cgroup v2 case to struct
sock_cgroup_data in order to address these issues; this implicitly also fixes
the tradeoffs being made back then with regards to races and refcount leaks
as stated in bd1060a1d671, and removes the fallback, so that cgroup v2 BPF
programs always operate as expected.
[0] https://github.com/nestybox/sysbox/
[1] https://kind.sigs.k8s.io/
Fixes: bd1060a1d671 ("sock, cgroup: add sock->sk_cgroup")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/bpf/20210913230759.2313-1-daniel@iogearbox.net
[resolve trivial conflicts]
Signed-off-by: Connor O'Brien <connor.obrien@crowdstrike.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit bd44ca3de49cc1badcff7a96010fa2c64f04868c ]
Currently the dma debugging code can end up indirectly calling printk
under the radix_lock. This happens when a radix tree node allocation
fails.
This is a problem because the printk code, when used together with
netconsole, can end up inside the dma debugging code while trying to
transmit a message over netcons.
This creates the possibility of either a circular deadlock on the same
CPU, with that CPU trying to grab the radix_lock twice, or an ABBA
deadlock between different CPUs, where one CPU grabs the console lock
first and then waits for the radix_lock, while the other CPU is holding
the radix_lock and is waiting for the console lock.
The trace captured by lockdep is of the ABBA variant.
-> #2 (&dma_entry_hash[i].lock){-.-.}-{2:2}:
_raw_spin_lock_irqsave+0x5a/0x90
debug_dma_map_page+0x79/0x180
dma_map_page_attrs+0x1d2/0x2f0
bnxt_start_xmit+0x8c6/0x1540
netpoll_start_xmit+0x13f/0x180
netpoll_send_skb+0x20d/0x320
netpoll_send_udp+0x453/0x4a0
write_ext_msg+0x1b9/0x460
console_flush_all+0x2ff/0x5a0
console_unlock+0x55/0x180
vprintk_emit+0x2e3/0x3c0
devkmsg_emit+0x5a/0x80
devkmsg_write+0xfd/0x180
do_iter_readv_writev+0x164/0x1b0
vfs_writev+0xf9/0x2b0
do_writev+0x6d/0x110
do_syscall_64+0x80/0x150
entry_SYSCALL_64_after_hwframe+0x4b/0x53
-> #0 (console_owner){-.-.}-{0:0}:
__lock_acquire+0x15d1/0x31a0
lock_acquire+0xe8/0x290
console_flush_all+0x2ea/0x5a0
console_unlock+0x55/0x180
vprintk_emit+0x2e3/0x3c0
_printk+0x59/0x80
warn_alloc+0x122/0x1b0
__alloc_pages_slowpath+0x1101/0x1120
__alloc_pages+0x1eb/0x2c0
alloc_slab_page+0x5f/0x150
new_slab+0x2dc/0x4e0
___slab_alloc+0xdcb/0x1390
kmem_cache_alloc+0x23d/0x360
radix_tree_node_alloc+0x3c/0xf0
radix_tree_insert+0xf5/0x230
add_dma_entry+0xe9/0x360
dma_map_page_attrs+0x1d2/0x2f0
__bnxt_alloc_rx_frag+0x147/0x180
bnxt_alloc_rx_data+0x79/0x160
bnxt_rx_skb+0x29/0xc0
bnxt_rx_pkt+0xe22/0x1570
__bnxt_poll_work+0x101/0x390
bnxt_poll+0x7e/0x320
__napi_poll+0x29/0x160
net_rx_action+0x1e0/0x3e0
handle_softirqs+0x190/0x510
run_ksoftirqd+0x4e/0x90
smpboot_thread_fn+0x1a8/0x270
kthread+0x102/0x120
ret_from_fork+0x2f/0x40
ret_from_fork_asm+0x11/0x20
This bug is more likely than it seems, because when one CPU has run out
of memory, chances are the other has too.
The good news is, this bug is hidden behind the CONFIG_DMA_API_DEBUG, so
not many users are likely to trigger it.
Signed-off-by: Rik van Riel <riel@surriel.com>
Reported-by: Konstantin Ovsepian <ovs@meta.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 1be59c97c83ccd67a519d8a49486b3a8a73ca28a upstream.
An UAF can happen when /proc/cpuset is read as reported in [1].
This can be reproduced by the following methods:
1.add an mdelay(1000) before acquiring the cgroup_lock In the
cgroup_path_ns function.
2.$cat /proc/<pid>/cpuset repeatly.
3.$mount -t cgroup -o cpuset cpuset /sys/fs/cgroup/cpuset/
$umount /sys/fs/cgroup/cpuset/ repeatly.
The race that cause this bug can be shown as below:
(umount) | (cat /proc/<pid>/cpuset)
css_release | proc_cpuset_show
css_release_work_fn | css = task_get_css(tsk, cpuset_cgrp_id);
css_free_rwork_fn | cgroup_path_ns(css->cgroup, ...);
cgroup_destroy_root | mutex_lock(&cgroup_mutex);
rebind_subsystems |
cgroup_free_root |
| // cgrp was freed, UAF
| cgroup_path_ns_locked(cgrp,..);
When the cpuset is initialized, the root node top_cpuset.css.cgrp
will point to &cgrp_dfl_root.cgrp. In cgroup v1, the mount operation will
allocate cgroup_root, and top_cpuset.css.cgrp will point to the allocated
&cgroup_root.cgrp. When the umount operation is executed,
top_cpuset.css.cgrp will be rebound to &cgrp_dfl_root.cgrp.
The problem is that when rebinding to cgrp_dfl_root, there are cases
where the cgroup_root allocated by setting up the root for cgroup v1
is cached. This could lead to a Use-After-Free (UAF) if it is
subsequently freed. The descendant cgroups of cgroup v1 can only be
freed after the css is released. However, the css of the root will never
be released, yet the cgroup_root should be freed when it is unmounted.
This means that obtaining a reference to the css of the root does
not guarantee that css.cgrp->root will not be freed.
Fix this problem by using rcu_read_lock in proc_cpuset_show().
As cgroup_root is kfree_rcu after commit d23b5c577715
("cgroup: Make operations on the cgroup root_list RCU safe"),
css->cgroup won't be freed during the critical section.
To call cgroup_path_ns_locked, css_set_lock is needed, so it is safe to
replace task_get_css with task_css.
[1] https://syzkaller.appspot.com/bug?extid=9b1ff7be974a403aa4cd
Fixes: a79a908fd2b0 ("cgroup: introduce cgroup namespaces")
Signed-off-by: Chen Ridong <chenridong@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Shivani Agarwal <shivani.agarwal@broadcom.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 5a830bbce3af16833fe0092dec47b6dd30279825 ]
The hrtimer function callback must not be NULL. It has to be specified by
the call side but it is not validated by the hrtimer code. When a hrtimer
is queued without a function callback, the kernel crashes with a null
pointer dereference when trying to execute the callback in __run_hrtimer().
Introduce a validation before queuing the hrtimer in
hrtimer_start_range_ns().
[anna-maria: Rephrase commit message]
Signed-off-by: Phil Chang <phil.chang@mediatek.com>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 6d45e1c948a8b7ed6ceddb14319af69424db730c upstream.
We are hit with a not easily reproducible divide-by-0 panic in padata.c at
bootup time.
[ 10.017908] Oops: divide error: 0000 1 PREEMPT SMP NOPTI
[ 10.017908] CPU: 26 PID: 2627 Comm: kworker/u1666:1 Not tainted 6.10.0-15.el10.x86_64 #1
[ 10.017908] Hardware name: Lenovo ThinkSystem SR950 [7X12CTO1WW]/[7X12CTO1WW], BIOS [PSE140J-2.30] 07/20/2021
[ 10.017908] Workqueue: events_unbound padata_mt_helper
[ 10.017908] RIP: 0010:padata_mt_helper+0x39/0xb0
:
[ 10.017963] Call Trace:
[ 10.017968] <TASK>
[ 10.018004] ? padata_mt_helper+0x39/0xb0
[ 10.018084] process_one_work+0x174/0x330
[ 10.018093] worker_thread+0x266/0x3a0
[ 10.018111] kthread+0xcf/0x100
[ 10.018124] ret_from_fork+0x31/0x50
[ 10.018138] ret_from_fork_asm+0x1a/0x30
[ 10.018147] </TASK>
Looking at the padata_mt_helper() function, the only way a divide-by-0
panic can happen is when ps->chunk_size is 0. The way that chunk_size is
initialized in padata_do_multithreaded(), chunk_size can be 0 when the
min_chunk in the passed-in padata_mt_job structure is 0.
Fix this divide-by-0 panic by making sure that chunk_size will be at least
1 no matter what the input parameters are.
Link: https://lkml.kernel.org/r/20240806174647.1050398-1-longman@redhat.com
Fixes: 004ed42638f4 ("padata: add basic support for multithreaded jobs")
Signed-off-by: Waiman Long <longman@redhat.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Waiman Long <longman@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bcf86c01ca4676316557dd482c8416ece8c2e143 upstream.
"tracing_map->next_elt" in get_free_elt() is at risk of overflowing.
Once it overflows, new elements can still be inserted into the tracing_map
even though the maximum number of elements (`max_elts`) has been reached.
Continuing to insert elements after the overflow could result in the
tracing_map containing "tracing_map->max_size" elements, leaving no empty
entries.
If any attempt is made to insert an element into a full tracing_map using
`__tracing_map_insert()`, it will cause an infinite loop with preemption
disabled, leading to a CPU hang problem.
Fix this by preventing any further increments to "tracing_map->next_elt"
once it reaches "tracing_map->max_elt".
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: 08d43a5fa063e ("tracing: Add lock-free tracing_map")
Co-developed-by: Cheng-Jui Wang <cheng-jui.wang@mediatek.com>
Link: https://lore.kernel.org/20240805055922.6277-1-Tze-nan.Wu@mediatek.com
Signed-off-by: Cheng-Jui Wang <cheng-jui.wang@mediatek.com>
Signed-off-by: Tze-nan Wu <Tze-nan.Wu@mediatek.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit edbbaae42a56f9a2b39c52ef2504dfb3fb0a7858 upstream.
Currently, whenever a caller is providing an affinity hint for an
interrupt, the allocation code uses it to calculate the node and copies the
cpumask into irq_desc::affinity.
If the affinity for the interrupt is not marked 'managed' then the startup
of the interrupt ignores irq_desc::affinity and uses the system default
affinity mask.
Prevent this by setting the IRQD_AFFINITY_SET flag for the interrupt in the
allocator, which causes irq_setup_affinity() to use irq_desc::affinity on
interrupt startup if the mask contains an online CPU.
[ tglx: Massaged changelog ]
Fixes: 45ddcecbfa94 ("genirq: Use affinity hint in irqdesc allocation")
Signed-off-by: Shay Drory <shayd@nvidia.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/all/20240806072044.837827-1-shayd@nvidia.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 06c03c8edce333b9ad9c6b207d93d3a5ae7c10c0 upstream.
Using syzkaller with the recently reintroduced signed integer overflow
sanitizer produces this UBSAN report:
UBSAN: signed-integer-overflow in ../kernel/time/ntp.c:738:18
9223372036854775806 + 4 cannot be represented in type 'long'
Call Trace:
handle_overflow+0x171/0x1b0
__do_adjtimex+0x1236/0x1440
do_adjtimex+0x2be/0x740
The user supplied time_constant value is incremented by four and then
clamped to the operating range.
Before commit eea83d896e31 ("ntp: NTP4 user space bits update") the user
supplied value was sanity checked to be in the operating range. That change
removed the sanity check and relied on clamping after incrementing which
does not work correctly when the user supplied value is in the overflow
zone of the '+ 4' operation.
The operation requires CAP_SYS_TIME and the side effect of the overflow is
NTP getting out of sync.
Similar to the fixups for time_maxerror and time_esterror, clamp the user
space supplied value to the operating range.
[ tglx: Switch to clamping ]
Fixes: eea83d896e31 ("ntp: NTP4 user space bits update")
Signed-off-by: Justin Stitt <justinstitt@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20240517-b4-sio-ntp-c-v2-1-f3a80096f36f@google.com
Closes: https://github.com/KSPP/linux/issues/352
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 87d571d6fb77ec342a985afa8744bb9bb75b3622 ]
Using syzkaller alongside the newly reintroduced signed integer overflow
sanitizer spits out this report:
UBSAN: signed-integer-overflow in ../kernel/time/ntp.c:461:16
9223372036854775807 + 500 cannot be represented in type 'long'
Call Trace:
handle_overflow+0x171/0x1b0
second_overflow+0x2d6/0x500
accumulate_nsecs_to_secs+0x60/0x160
timekeeping_advance+0x1fe/0x890
update_wall_time+0x10/0x30
time_maxerror is unconditionally incremented and the result is checked
against NTP_PHASE_LIMIT, but the increment itself can overflow, resulting
in wrap-around to negative space.
Before commit eea83d896e31 ("ntp: NTP4 user space bits update") the user
supplied value was sanity checked to be in the operating range. That change
removed the sanity check and relied on clamping in handle_overflow() which
does not work correctly when the user supplied value is in the overflow
zone of the '+ 500' operation.
The operation requires CAP_SYS_TIME and the side effect of the overflow is
NTP getting out of sync.
Miroslav confirmed that the input value should be clamped to the operating
range and the same applies to time_esterror. The latter is not used by the
kernel, but the value still should be in the operating range as it was
before the sanity check got removed.
Clamp them to the operating range.
[ tglx: Changed it to clamping and included time_esterror ]
Fixes: eea83d896e31 ("ntp: NTP4 user space bits update")
Signed-off-by: Justin Stitt <justinstitt@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Link: https://lore.kernel.org/all/20240517-b4-sio-ntp-usec-v2-1-d539180f2b79@google.com
Closes: https://github.com/KSPP/linux/issues/354
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ cast things to long long to fix compiler warnings - gregkh ]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6881e75237a84093d0986f56223db3724619f26e upstream.
The recent fix for making the take over of the broadcast timer more
reliable retrieves a per CPU pointer in preemptible context.
This went unnoticed as compilers hoist the access into the non-preemptible
region where the pointer is actually used. But of course it's valid that
the compiler keeps it at the place where the code puts it which rightfully
triggers:
BUG: using smp_processor_id() in preemptible [00000000] code:
caller is hotplug_cpu__broadcast_tick_pull+0x1c/0xc0
Move it to the actual usage site which is in a non-preemptible region.
Fixes: f7d43dd206e7 ("tick/broadcast: Make takeover of broadcast hrtimer reliable")
Reported-by: David Wang <00107082@163.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Yu Liao <liaoyu15@huawei.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/87ttg56ers.ffs@tglx
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 8c8acb8f26cbde665b233dd1b9bbcbb9b86822dc ]
Since str_has_prefix() takes the prefix as the 2nd argument and the string
as the first, is_cfi_preamble_symbol() always fails to check the prefix.
Fix the function parameter order so that it correctly check the prefix.
Link: https://lore.kernel.org/all/172260679559.362040.7360872132937227206.stgit@devnote2/
Fixes: de02f2ac5d8c ("kprobes: Prohibit probing on CFI preamble symbol")
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 77baa5bafcbe1b2a15ef9c37232c21279c95481c upstream.
In extreme test scenarios:
the 14th field utime in /proc/xx/stat is greater than sum_exec_runtime,
utime = 18446744073709518790 ns, rtime = 135989749728000 ns
In cputime_adjust() process, stime is greater than rtime due to
mul_u64_u64_div_u64() precision problem.
before call mul_u64_u64_div_u64(),
stime = 175136586720000, rtime = 135989749728000, utime = 1416780000.
after call mul_u64_u64_div_u64(),
stime = 135989949653530
unsigned reversion occurs because rtime is less than stime.
utime = rtime - stime = 135989749728000 - 135989949653530
= -199925530
= (u64)18446744073709518790
Trigger condition:
1). User task run in kernel mode most of time
2). ARM64 architecture
3). TICK_CPU_ACCOUNTING=y
CONFIG_VIRT_CPU_ACCOUNTING_NATIVE is not set
Fix mul_u64_u64_div_u64() conversion precision by reset stime to rtime
Fixes: 3dc167ba5729 ("sched/cputime: Improve cputime_adjust()")
Signed-off-by: Zheng Zucheng <zhengzucheng@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20240726023235.217771-1-zhengzucheng@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 6040072f4774a575fa67b912efe7722874be337b ]
On powerpc systems, spinlock acquisition does not order prior stores
against later loads. This means that this statement:
rfcp->rfc_next = NULL;
Can be reordered to follow this statement:
WRITE_ONCE(*rfcpp, rfcp);
Which is then a data race with rcu_torture_fwd_prog_cr(), specifically,
this statement:
rfcpn = READ_ONCE(rfcp->rfc_next)
KCSAN located this data race, which represents a real failure on powerpc.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Marco Elver <elver@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: <kasan-dev@googlegroups.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 393e1280f765661cf39785e967676a4e57324126 ]
In order to let a const irqchip be fed to the irqchip layer, adjust
the various prototypes. An extra cast in irq_set_chip()() is required
to avoid a warning.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Link: https://lore.kernel.org/r/20220209162607.1118325-3-maz@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1f8863bfb5ca500ea1c7669b16b1931ba27fce20 ]
As a preparation to moving the reference to the device used for
runtime power management, add a new 'dev' field to the irqdomain
structure for that exact purpose.
The irq_chip_pm_{get,put}() helpers are made aware of the dual
location via a new private helper.
No functional change intended.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Tested-by: Tony Lindgren <tony@atomide.com>
Acked-by: Bartosz Golaszewski <brgl@bgdev.pl>
Link: https://lore.kernel.org/r/20220201120310.878267-2-maz@kernel.org
Stable-dep-of: 33b1c47d1fc0 ("irqchip/imx-irqsteer: Handle runtime power management correctly")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 28e8b7406d3a1f5329a03aa25a43aa28e087cb20 ]
dmam_free_coherent() frees a DMA allocation, which makes the
freed vaddr available for reuse, then calls devres_destroy()
to remove and free the data structure used to track the DMA
allocation. Between the two calls, it is possible for a
concurrent task to make an allocation with the same vaddr
and add it to the devres list.
If this happens, there will be two entries in the devres list
with the same vaddr and devres_destroy() can free the wrong
entry, triggering the WARN_ON() in dmam_match.
Fix by destroying the devres entry before freeing the DMA
allocation.
Tested:
kokonut //net/encryption
http://sponge2/b9145fe6-0f72-4325-ac2f-a84d81075b03
Fixes: 9ac7849e35f7 ("devres: device resource management")
Signed-off-by: Lance Richardson <rlance@google.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e2e821095949cde46256034975a90f88626a2a73 ]
The function kdb_position_cursor() takes in a "prompt" parameter but
never uses it. This doesn't _really_ matter since all current callers
of the function pass the same value and it's a global variable, but
it's a bit ugly. Let's clean it up.
Found by code inspection. This patch is expected to functionally be a
no-op.
Fixes: 09b35989421d ("kdb: Use format-strings rather than '\0' injection in kdb_read()")
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20240528071144.1.I0feb49839c6b6f4f2c4bf34764f5e95de3f55a66@changeid
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 70867efacf4370b6c7cdfc7a5b11300e9ef7de64 ]
When -Wformat-security is not disabled, using a string pointer
as a format causes a warning:
kernel/debug/kdb/kdb_io.c: In function 'kdb_read':
kernel/debug/kdb/kdb_io.c:365:36: error: format not a string literal and no format arguments [-Werror=format-security]
365 | kdb_printf(kdb_prompt_str);
| ^~~~~~~~~~~~~~
kernel/debug/kdb/kdb_io.c: In function 'kdb_getstr':
kernel/debug/kdb/kdb_io.c:456:20: error: format not a string literal and no format arguments [-Werror=format-security]
456 | kdb_printf(kdb_prompt_str);
| ^~~~~~~~~~~~~~
Use an explcit "%s" format instead.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Fixes: 5d5314d6795f ("kdb: core for kgdb back end (1 of 2)")
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20240528121154.3662553-1-arnd@kernel.org
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 943ad0b62e3c21f324c4884caa6cb4a871bca05c upstream.
io_uring can asynchronously add a task_work while the task is getting
freezed. TIF_NOTIFY_SIGNAL will prevent the task from sleeping in
do_freezer_trap(), and since the get_signal()'s relock loop doesn't
retry task_work, the task will spin there not being able to sleep
until the freezing is cancelled / the task is killed / etc.
Run task_works in the freezer path. Keep the patch small and simple
so it can be easily back ported, but we might need to do some cleaning
after and look if there are other places with similar problems.
Cc: stable@vger.kernel.org
Link: https://github.com/systemd/systemd/issues/33626
Fixes: 12db8b690010c ("entry: Add support for TIF_NOTIFY_SIGNAL")
Reported-by: Julian Orth <ju.orth@gmail.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/89ed3a52933370deaaf61a0a620a6ac91f1e754d.1720634146.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f944ffcbc2e1c759764850261670586ddf3bdabb upstream.
For systems on which the performance counter can expire early due to turbo
modes the watchdog handler has a safety net in place which validates that
since the last watchdog event there has at least 4/5th of the watchdog
period elapsed.
This works reliably only after the first watchdog event because the per
CPU variable which holds the timestamp of the last event is never
initialized.
So a first spurious event will validate against a timestamp of 0 which
results in a delta which is likely to be way over the 4/5 threshold of the
period. As this might happen before the first watchdog hrtimer event
increments the watchdog counter, this can lead to false positives.
Fix this by initializing the timestamp before enabling the hardware event.
Reset the rearm counter as well, as that might be non zero after the
watchdog was disabled and reenabled.
Link: https://lkml.kernel.org/r/87frsfu15a.ffs@tglx
Fixes: 7edaeb6841df ("kernel/watchdog: Prevent false positives with turbo modes")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f409530e4db9dd11b88cb7703c97c8f326ff6566 upstream.
Re-introduce task_work_cancel(), this time to cancel an actual callback
and not *any* callback pointing to a given function. This is going to be
needed for perf events event freeing.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240621091601.18227-3-frederic@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 68cbd415dd4b9c5b9df69f0f091879e56bf5907a upstream.
A proper task_work_cancel() API that actually cancels a callback and not
*any* callback pointing to a given function is going to be needed for
perf events event freeing. Do the appropriate rename to prepare for
that.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240621091601.18227-2-frederic@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3af7524b14198f5159a86692d57a9f28ec9375ce upstream.
Running N CPU-bound tasks on an N CPUs platform:
- with asymmetric CPU capacity
- not being a DynamIq system (i.e. having a PKG level sched domain
without the SD_SHARE_PKG_RESOURCES flag set)
.. might result in a task placement where two tasks run on a big CPU
and none on a little CPU. This placement could be more optimal by
using all CPUs.
Testing platform:
Juno-r2:
- 2 big CPUs (1-2), maximum capacity of 1024
- 4 little CPUs (0,3-5), maximum capacity of 383
Testing workload ([1]):
Spawn 6 CPU-bound tasks. During the first 100ms (step 1), each tasks
is affine to a CPU, except for:
- one little CPU which is left idle.
- one big CPU which has 2 tasks affine.
After the 100ms (step 2), remove the cpumask affinity.
Behavior before the patch:
During step 2, the load balancer running from the idle CPU tags sched
domains as:
- little CPUs: 'group_has_spare'. Cf. group_has_capacity() and
group_is_overloaded(), 3 CPU-bound tasks run on a 4 CPUs
sched-domain, and the idle CPU provides enough spare capacity
regarding the imbalance_pct
- big CPUs: 'group_overloaded'. Indeed, 3 tasks run on a 2 CPUs
sched-domain, so the following path is used:
group_is_overloaded()
\-if (sgs->sum_nr_running <= sgs->group_weight) return true;
The following path which would change the migration type to
'migrate_task' is not taken:
calculate_imbalance()
\-if (env->idle != CPU_NOT_IDLE && env->imbalance == 0)
as the local group has some spare capacity, so the imbalance
is not 0.
The migration type requested is 'migrate_util' and the busiest
runqueue is the big CPU's runqueue having 2 tasks (each having a
utilization of 512). The idle little CPU cannot pull one of these
task as its capacity is too small for the task. The following path
is used:
detach_tasks()
\-case migrate_util:
\-if (util > env->imbalance) goto next;
After the patch:
As the number of failed balancing attempts grows (with
'nr_balance_failed'), progressively make it easier to migrate
a big task to the idling little CPU. A similar mechanism is
used for the 'migrate_load' migration type.
Improvement:
Running the testing workload [1] with the step 2 representing
a ~10s load for a big CPU:
Before patch: ~19.3s
After patch: ~18s (-6.7%)
Similar issue reported at:
https://lore.kernel.org/lkml/20230716014125.139577-1-qyousef@layalina.io/
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Pierre Gondois <pierre.gondois@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Qais Yousef <qyousef@layalina.io>
Link: https://lore.kernel.org/r/20231206090043.634697-1-pierre.gondois@arm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d329605287020c3d1c3b0dadc63d8208e7251382 upstream.
When a task's weight is being changed, set_load_weight() is called with
@update_load set. As weight changes aren't trivial for the fair class,
set_load_weight() calls fair.c::reweight_task() for fair class tasks.
However, set_load_weight() first tests task_has_idle_policy() on entry and
skips calling reweight_task() for SCHED_IDLE tasks. This is buggy as
SCHED_IDLE tasks are just fair tasks with a very low weight and they would
incorrectly skip load, vlag and position updates.
Fix it by updating reweight_task() to take struct load_weight as idle weight
can't be expressed with prio and making set_load_weight() call
reweight_task() for SCHED_IDLE tasks too when @update_load is set.
Fixes: 9059393e4ec1 ("sched/fair: Use reweight_entity() for set_user_nice()")
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org # v4.15+
Link: http://lkml.kernel.org/r/20240624102331.GI31592@noisy.programming.kicks-ass.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f7d43dd206e7e18c182f200e67a8db8c209907fa upstream.
Running the LTP hotplug stress test on a aarch64 machine results in
rcu_sched stall warnings when the broadcast hrtimer was owned by the
un-plugged CPU. The issue is the following:
CPU1 (owns the broadcast hrtimer) CPU2
tick_broadcast_enter()
// shutdown local timer device
broadcast_shutdown_local()
...
tick_broadcast_exit()
clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT)
// timer device is not programmed
cpumask_set_cpu(cpu, tick_broadcast_force_mask)
initiates offlining of CPU1
take_cpu_down()
/*
* CPU1 shuts down and does not
* send broadcast IPI anymore
*/
takedown_cpu()
hotplug_cpu__broadcast_tick_pull()
// move broadcast hrtimer to this CPU
clockevents_program_event()
bc_set_next()
hrtimer_start()
/*
* timer device is not programmed
* because only the first expiring
* timer will trigger clockevent
* device reprogramming
*/
What happens is that CPU2 exits broadcast mode with force bit set, then the
local timer device is not reprogrammed and CPU2 expects to receive the
expired event by the broadcast IPI. But this does not happen because CPU1
is offlined by CPU2. CPU switches the clockevent device to ONESHOT state,
but does not reprogram the device.
The subsequent reprogramming of the hrtimer broadcast device does not
program the clockevent device of CPU2 either because the pending expiry
time is already in the past and the CPU expects the event to be delivered.
As a consequence all CPUs which wait for a broadcast event to be delivered
are stuck forever.
Fix this issue by reprogramming the local timer device if the broadcast
force bit of the CPU is set so that the broadcast hrtimer is delivered.
[ tglx: Massage comment and change log. Add Fixes tag ]
Fixes: 989dcb645ca7 ("tick: Handle broadcast wakeup of multiple cpus")
Signed-off-by: Yu Liao <liaoyu15@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240711124843.64167-1-liaoyu15@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 2454075f8e2915cebbe52a1195631bc7efe2b7e1 ]
As reported by Mirsad [1] we still see format warnings in kernel/bpf/btf.o
at W=1 warning level:
CC kernel/bpf/btf.o
./kernel/bpf/btf.c: In function ‘btf_type_seq_show_flags’:
./kernel/bpf/btf.c:7553:21: warning: assignment left-hand side might be a candidate for a format attribute [-Wsuggest-attribute=format]
7553 | sseq.showfn = btf_seq_show;
| ^
./kernel/bpf/btf.c: In function ‘btf_type_snprintf_show’:
./kernel/bpf/btf.c:7604:31: warning: assignment left-hand side might be a candidate for a format attribute [-Wsuggest-attribute=format]
7604 | ssnprintf.show.showfn = btf_snprintf_show;
| ^
Combined with CONFIG_WERROR=y these can halt the build.
The fix (annotating the structure field with __printf())
suggested by Mirsad resolves these. Apologies I missed this last time.
No other W=1 warnings were observed in kernel/bpf after this fix.
[1] https://lore.kernel.org/bpf/92c9d047-f058-400c-9c7d-81d4dc1ef71b@gmail.com/
Fixes: b3470da314fd ("bpf: annotate BTF show functions with __printf")
Reported-by: Mirsad Todorovac <mtodorovac69@gmail.com>
Suggested-by: Mirsad Todorovac <mtodorovac69@gmail.com>
Signed-off-by: Alan Maguire <alan.maguire@oracle.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20240712092859.1390960-1-alan.maguire@oracle.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b3470da314fd8018ee237e382000c4154a942420 ]
-Werror=suggest-attribute=format warns about two functions
in kernel/bpf/btf.c [1]; add __printf() annotations to silence
these warnings since for CONFIG_WERROR=y they will trigger
build failures.
[1] https://lore.kernel.org/bpf/a8b20c72-6631-4404-9e1f-0410642d7d20@gmail.com/
Fixes: 31d0bc81637d ("bpf: Move to generic BTF show support, apply it to seq files/strings")
Reported-by: Mirsad Todorovac <mtodorovac69@gmail.com>
Signed-off-by: Alan Maguire <alan.maguire@oracle.com>
Tested-by: Mirsad Todorovac <mtodorovac69@yahoo.com>
Link: https://lore.kernel.org/r/20240711182321.963667-1-alan.maguire@oracle.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit dbc48c8f41c208082cfa95e973560134489e3309 ]
nr_pages is unsigned long but gets passed to rb_alloc_aux() as an int,
and is stored as an int.
Only power-of-2 values are accepted, so if nr_pages is a 64_bit value, it
will be passed to rb_alloc_aux() as zero.
That is not ideal because:
1. the value is incorrect
2. rb_alloc_aux() is at risk of misbehaving, although it manages to
return -ENOMEM in that case, it is a result of passing zero to get_order()
even though the get_order() result is documented to be undefined in that
case.
Fix by simply validating the maximum supported value in the first place.
Use -ENOMEM error code for consistency with the current error code that
is returned in that case.
Fixes: 45bfb2e50471 ("perf: Add AUX area to ring buffer for raw data streams")
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240624201101.60186-6-adrian.hunter@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3df94a5b1078dfe2b0c03f027d018800faf44c82 ]
perf_buffer->aux_nr_pages uses a 32-bit type, so a cast is needed to
calculate a 64-bit size.
Fixes: 45bfb2e50471 ("perf: Add AUX area to ring buffer for raw data streams")
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240624201101.60186-5-adrian.hunter@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Currently, to search for a symbol, we need to expand the symbols in
'kallsyms_names' one by one, and then use the expanded string for
comparison. It's O(n).
If we sort names in ascending order like addresses, we can also use
binary search. It's O(log(n)).
In order not to change the implementation of "/proc/kallsyms", the table
kallsyms_names[] is still stored in a one-to-one correspondence with the
address in ascending order.
Add array kallsyms_seqs_of_names[], it's indexed by the sequence number
of the sorted names, and the corresponding content is the sequence number
of the sorted addresses. For example:
Assume that the index of NameX in array kallsyms_seqs_of_names[] is 'i',
the content of kallsyms_seqs_of_names[i] is 'k', then the corresponding
address of NameX is kallsyms_addresses[k]. The offset in kallsyms_names[]
is get_symbol_offset(k).
Note that the memory usage will increase by (4 * kallsyms_num_syms)
bytes, the next two patches will reduce (1 * kallsyms_num_syms) bytes
and properly handle the case CONFIG_LTO_CLANG=y.
Performance test results: (x86)
Before:
min=234, max=10364402, avg=5206926
min=267, max=11168517, avg=5207587
After:
min=1016, max=90894, avg=7272
min=1014, max=93470, avg=7293
The average lookup performance of kallsyms_lookup_name() improved 715x.
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Few wakelocks tends to get stuck for no reason. Blocking them
isn't necessary and sometimes blocking them breaks basic
functionality.
Wakelocks like "tx_swr_ctrl" tends to get stuck if we keep earphones
connected and drops battery massively.
Test: Keep earphones plugged in and leave device for few hours
Expected result: No "tx_swr_ctrl" is being stuck.
Actual result: Patch is working as expected.
Change-Id: I5296990a84ab44cf6e449d6535b8b99408c415c8
Signed-off-by: Panchajanya1999 <panchajanya@azure-dev.live>
Signed-off-by: Panchajanya1999 <kernel@panchajanya.dev>
(cherry picked from commit c721867bf4dc2e2c316b2623ad97a28382af2c8c)
(cherry picked from commit a5e999ea4df99f91b7b5aa5bab5b39123587424f)
If the last CPU frequency selected isn't set before a new CPU frequency
selection arrives, then use the new selection immediately to avoid using a
stale frequency choice. This improves both performance and energy by more
closely tracking the scheduler's latest decisions.
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
Even with an affinity mask that has multiple CPUs set, IRQs always run
on the first CPU in their affinity mask. Drivers that register an IRQ
affinity notifier (such as pm_qos) will therefore have an incorrect
assumption of where an IRQ is affined.
Fix the IRQ affinity mask deception by forcing it to only contain one
set CPU.
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
On ARM, IRQs are executed on the first CPU inside the affinity mask, so
setting an affinity mask with more than one CPU set is deceptive and
causes issues with pm_qos. To fix this, only set the CPU0 bit inside the
affinity mask, since that's where IRQs will run by default.
This is a follow-up to "kernel: Don't allow IRQ affinity masks to have
more than one CPU".
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
An IRQ affinity notifier getting overwritten can point to some annoying
issues which need to be resolved, like multiple pm_qos objects being
registered to the same IRQ. Print out a warning when this happens to aid
debugging.
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
Freezing processes on Android usually takes less than 100 ms, and if it
takes longer than that to the point where the 20 second freeze timeout is
reached, it's because the remaining processes to be frozen are deadlocked
waiting for something from a process which is already frozen. There's no
point in burning power trying to freeze for that long, so reduce the freeze
timeout to a very generous 1 second for Android and don't let anything mess
with it.
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
Alarmtimer sets its wakeup timeout to 2s no matter the actual time
to nearest timer expiration. This can cause device to be awake for more
than needed.
To fix this set wakeup timeout to min + 1 ms for safety margin.
Tests revealed that average timer expiration is 1150ms in the future
which suggests there is a room avilable to minimize wakeup times.
Before this change device would enter sleep not earlier than 2s after
alarmtimer suspend error (-EBUSY). With this change average suspend
after alarmtimer suspend error time went down to 1.5s with a minimum of
0.248ms (after filtering results higher than 2.6s).
This should lead to noticeable power savings as Android uses alarmtimer
quite frequently.
Signed-off-by: Andrzej Perczak <linux@andrzejperczak.com>
Signed-off-by: Zlatan Radovanovic <zlatan.radovanovic@fet.ba>
Android devices use LMK algorythms, so there's no
reason to disable and enable the OOM killer when entering and exiting
suspend.
This is a fixed version of https://github.com/YaroST12/VIOLENT_kernel/commit/86e59a93b2ef
Co-authored-by: Danny Lin <danny@kdrag0n.dev>
Signed-off-by: Yaroslav Furman <yaro330@gmail.com>
Signed-off-by: celtare21 <celtare21@gmail.com>
Signed-off-by: Ren <89468157+Shirayuki39@users.noreply.github.com>
Scheduler code is very hot and every little optimization counts. Instead
of constantly checking sched_numa_balancing when NUMA is disabled,
compile it out.
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
A significant portion of __calc_delta() time is spent in the loop
shifting a u64 by 32 bits. Use `fls` instead of iterating.
This is ~7x faster on benchmarks.
The generic `fls` implementation (`generic_fls`) is still ~4x faster
than the loop.
Architectures that have a better implementation will make use of it. For
example, on x86 we get an additional factor 2 in speed without dedicated
implementation.
On GCC, the asm versions of `fls` are about the same speed as the
builtin. On Clang, the versions that use fls are more than twice as
slow as the builtin. This is because the way the `fls` function is
written, clang puts the value in memory:
https://godbolt.org/z/EfMbYe. This bug is filed at
https://bugs.llvm.org/show_bug.cgi?idI406.
```
name cpu/op
BM_Calc<__calc_delta_loop> 9.57ms Â=B112%
BM_Calc<__calc_delta_generic_fls> 2.36ms Â=B113%
BM_Calc<__calc_delta_asm_fls> 2.45ms Â=B113%
BM_Calc<__calc_delta_asm_fls_nomem> 1.66ms Â=B112%
BM_Calc<__calc_delta_asm_fls64> 2.46ms Â=B113%
BM_Calc<__calc_delta_asm_fls64_nomem> 1.34ms Â=B115%
BM_Calc<__calc_delta_builtin> 1.32ms Â=B111%
```
Signed-off-by: Clement Courbet <courbet@google.com>
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210303224653.2579656-1-joshdon@google.com
Giving userspace intimate control over CPU latency requirements is
nonsense. Userspace can't even stop itself from being preempted, so
there's no reason for it to have access to a mechanism primarily used to
eliminate CPU delays on the order of microseconds.
Remove userspace's ability to send pm_qos requests so that it can't hurt
power consumption.
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
Signed-off-by: Panchajanya1999 <kernel@panchajanya.dev>
Although SCHED_FIFO is a real-time scheduling policy, it can have bad
results on system latency, since each SCHED_FIFO task will run to
completion before yielding to another task. This can result in visible
micro-stalls when a SCHED_FIFO task hogs the CPU for too long. On a
system where latency is favored over throughput, using SCHED_RR is a
better choice than SCHED_FIFO.
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
Signed-off-by: Oktapra Amtono <oktapra.amtono@gmail.com>
Signed-off-by: CloudedQuartz <ravenklawasd@gmail.com>
Restricting sugov kthreads to their respective CPUFreq policy's CPUs slows
down schedutil's ability to switch frequencies. When DVFS is allowed from
any CPU, allow respective sugov kthreads to run on any CPU for better
performance.
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
When charging, healthd and dashd will spam every several secs, it's sooooo noisy and useless.
If you launch a userspace app, there will give a logd message, silence it.
Signed-off-by: Wahid Khan <wahidzk0091@gmail.com>
Signed-off-by: atndko <z1281552865@gmail.com>
Signed-off-by: Vaisakh Murali <mvaisakh@statixos.com>
Signed-off-by: Cyber Knight <cyberknight755@gmail.com>
Android isn't a real-time userspace and has lots of processes, which makes
the normal sched_nr_migrate value of 32 more appealing. In addition,
there's no observed latency reduction from using a sched_nr_migrate value
of 8, probably because the shallowest idle state on mobile CPUs takes
longer to enter/exit than it takes for the scheduler to do a load balance
run, so our tail end latency is limited by cpuidle anyway.
The schedutil governor reduces frequencies too fast in some
situations which cases undesirable performance drops to
appear.
To address that issue, make schedutil reduce the frequency slower by
setting it to the average of the value chosen during the previous
iteration of governor computations and the new one coming from its
frequency selection formula.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=194963
Reported-by: John <john.ettedgui@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Cykeek <Cykeek@proton.me>
Signed-off-by: negrroo <mohammedaelnaggar1@gmail.com>
Signed-off-by: priiii1808 <priyanshusinghal0818@gmail.com>
We don't really need to know if the CPU is getting disabled or enabled on a production device.
Signed-off-by: Cyber Knight <cyberknight755@gmail.com>
Signed-off-by: priiii1808 <priyanshusinghal0818@gmail.com>
The uname system-call will return CONFIG_UNAME_OVERRIDE_STRING on struct
new_utsname->release when a process with CONFIG_UNAME_OVERRIDE_TARGET
included in its cmdline calls it.
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
The effective affinity mask causes a lot of bugs by virtue of many
set_irq_affinity handlers only setting an effective affinity mask for an
IRQ's parent but not the IRQ itself. Since this is a widespread issue that
would require manual fixing on every different SoC, just disable the
effective affinity mask altogether and use the first CPU in an affinity
mask configured.
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
None of the pm_qos functions actually run in interrupt context; if some
driver calls pm_qos_update_target in interrupt context then it's already
broken. There's no need to disable interrupts while holding pm_qos_lock,
so don't do it.
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
In preparation for converting bit_spin_lock to rwlock in zsmalloc so
that multiple writers of zspages can run at the same time but those
zspages are supposed to be different zspage instance. Thus, it's not
deadlock. This patch adds write_lock_nested to support the case for
LOCKDEP.
[minchan@kernel.org: fix write_lock_nested for RT]
Link: https://lkml.kernel.org/r/YZfrMTAXV56HFWJY@google.com
[bigeasy@linutronix.de: fixup write_lock_nested() implementation]
Link: https://lkml.kernel.org/r/20211123170134.y6xb7pmpgdn4m3bn@linutronix.de
Link: https://lkml.kernel.org/r/20211115185909.3949505-8-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Unity-based games (such as Wild Rift) like to shoot themselves in the foot
by setting a nonsense CPU affinity, restricting the game to a narrow set of
CPU cores that it thinks are the "big" cores in a heterogeneous CPU. It
assumes that CPUs only have two performance domains (clusters), and
therefore royally mucks up games' CPU affinities on CPUs which have more
than two performance domains.
Check if a setaffinity target task is part of a Unity-based game and
silently ignore the setaffinity request so that it can't sabotage itself.
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
Current users of the rstat code can source root-level statistics from
the native counters of their respective subsystem, allowing them to
forego aggregation at the root level. This optimization is currently
implemented inside the generic rstat code, which doesn't track the root
cgroup and doesn't invoke the subsystem flush callbacks on it.
However, the memory controller cannot do this optimization, because
cgroup1 breaks out memory specifically for the local level, including at
the root level. In preparation for the memory controller switching to
rstat, move the optimization from rstat core to the controllers.
Afterwards, rstat will always track the root cgroup for changes and
invoke the subsystem callbacks on it; and it's up to the subsystem to
special-case and skip aggregation of the root cgroup if it can source
this information through other, cheaper means.
This is the case for the io controller and the cgroup base stats. In
their respective flush callbacks, check whether the parent is the root
cgroup, and if so, skip the unnecessary upward propagation.
The extra cost of tracking the root cgroup is negligible: on stat
changes, we actually remove a branch that checks for the root. The
queueing for a flush touches only per-cpu data, and only the first stat
change since a flush requires a (per-cpu) lock.
Link: https://lkml.kernel.org/r/20210209163304.77088-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry picked from commit dc26532aed0ab25c0801a34640d1f3b9b9098a48)
(cherry picked from commit 69da183fcd0112af130879a1c93113a941e2241b)
(cherry picked from commit ddf1013871482b246147e71a04c865c1be5cf74d)
(cherry picked from commit 30fcd52e18dd1d508b1b22f7c660ac22de734f67)
(cherry picked from commit 19c9a1b9d9ae9a4f359deaf89101f9013254f43d)
(cherry picked from commit 0b4286aea9bb0a6ea6acb723f8396e476044190b)
The protected nodes are:
* dirty_ratio
* dirty_background_ratio
* dirty_bytes
* dirty_background_bytes
* dirty_expire_centisecs
* dirty_writeback_centisecs
* swappiness
This approach is inspired by [1] and makes use of the node tampering blacklist.
[1]: 239efdc263
Signed-off-by: Nahuel Gómez <nahuelgomez329@gmail.com>
Earlier commits in this series allow battery-powered systems to build
their kernels with the default-disabled CONFIG_RCU_LAZY=y Kconfig option.
This Kconfig option causes call_rcu() to delay its callbacks in order
to batch them. This means that a given RCU grace period covers more
callbacks, thus reducing the number of grace periods, in turn reducing
the amount of energy consumed, which increases battery lifetime which
can be a very good thing. This is not a subtle effect: In some important
use cases, the battery lifetime is increased by more than 10%.
This CONFIG_RCU_LAZY=y option is available only for CPUs that offload
callbacks, for example, CPUs mentioned in the rcu_nocbs kernel boot
parameter passed to kernels built with CONFIG_RCU_NOCB_CPU=y.
Delaying callbacks is normally not a problem because most callbacks do
nothing but free memory. If the system is short on memory, a shrinker
will kick all currently queued lazy callbacks out of their laziness,
thus freeing their memory in short order. Similarly, the rcu_barrier()
function, which blocks until all currently queued callbacks are invoked,
will also kick lazy callbacks, thus enabling rcu_barrier() to complete
in a timely manner.
However, there are some cases where laziness is not a good option.
For example, synchronize_rcu() invokes call_rcu(), and blocks until
the newly queued callback is invoked. It would not be a good for
synchronize_rcu() to block for ten seconds, even on an idle system.
Therefore, synchronize_rcu() invokes call_rcu_flush() instead of
call_rcu(). The arrival of a non-lazy call_rcu_flush() callback on a
given CPU kicks any lazy callbacks that might be already queued on that
CPU. After all, if there is going to be a grace period, all callbacks
might as well get full benefit from it.
Yes, this could be done the other way around by creating a
call_rcu_lazy(), but earlier experience with this approach and
feedback at the 2022 Linux Plumbers Conference shifted the approach
to call_rcu() being lazy with call_rcu_flush() for the few places
where laziness is inappropriate.
And another call_rcu() instance that cannot be lazy is the one
in queue_rcu_work(), given that callers to queue_rcu_work() are
not necessarily OK with long delays.
Therefore, make queue_rcu_work() use call_rcu_flush() in order to revert
to the old behavior.
Signed-off-by: Uladzislau Rezki <urezki@gmail.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Limiting CPU capacity updates, which are quite cheap, results in worse
balancing decisions during opportunistic balancing (e.g., SD_BALANCE_WAKE).
This causes opportunistic placement decisions to be skewed using stale CPU
capacity data, and when a CPU isn't idling much, its capacity suffers from
even more staleness since the only exception to the 100 ms capacity update
ratelimit is a CPU exiting idle.
Since the capacity updates are cheap, always do it when load balancing in
order to improve opportunistic task placement decisions.
Change-Id: If1d451ce742fd093010057e31e71012d47fad70a
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
When there are no callbacks pending on an idle system, I noticed that
RCU softirq is continuously firing. During this the cpu_no_qs is set to
false, and core_needs_qs is set to true indefinitely. This causes
rcu_process_callbacks to be repeatedly called, even though the node
corresponding to the CPU has that CPU's mask bit cleared and the system
is idle. I believe the race is when such mask clearing is done during
idle CPU scan of the quiescent state forcing stage in the kthread
instead of the softirq. Since the rnp mask is cleared, but the flags on
the CPU's rdp are not cleared, the CPU thinks it still needs to report
to core RCU.
Cure this by clearing the core_needs_qs flag when the CPU detects that
its node is already updated which will avoid the unwanted softirq raises
to the benefit of real-time systems.
Test: Ran rcutorture for various tree RCU configs.
Change-Id: Iee374d1dcdc74ecc5e6816a99be51feddd876931
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Signed-off-by: mydongistiny <jaysonedson@gmail.com>
commit cfa1a2329a691ffd991fcf7248a57d752e712881 upstream.
The BPF ring buffer internally is implemented as a power-of-2 sized circular
buffer, with two logical and ever-increasing counters: consumer_pos is the
consumer counter to show which logical position the consumer consumed the
data, and producer_pos which is the producer counter denoting the amount of
data reserved by all producers.
Each time a record is reserved, the producer that "owns" the record will
successfully advance producer counter. In user space each time a record is
read, the consumer of the data advanced the consumer counter once it finished
processing. Both counters are stored in separate pages so that from user
space, the producer counter is read-only and the consumer counter is read-write.
One aspect that simplifies and thus speeds up the implementation of both
producers and consumers is how the data area is mapped twice contiguously
back-to-back in the virtual memory, allowing to not take any special measures
for samples that have to wrap around at the end of the circular buffer data
area, because the next page after the last data page would be first data page
again, and thus the sample will still appear completely contiguous in virtual
memory.
Each record has a struct bpf_ringbuf_hdr { u32 len; u32 pg_off; } header for
book-keeping the length and offset, and is inaccessible to the BPF program.
Helpers like bpf_ringbuf_reserve() return `(void *)hdr + BPF_RINGBUF_HDR_SZ`
for the BPF program to use. Bing-Jhong and Muhammad reported that it is however
possible to make a second allocated memory chunk overlapping with the first
chunk and as a result, the BPF program is now able to edit first chunk's
header.
For example, consider the creation of a BPF_MAP_TYPE_RINGBUF map with size
of 0x4000. Next, the consumer_pos is modified to 0x3000 /before/ a call to
bpf_ringbuf_reserve() is made. This will allocate a chunk A, which is in
[0x0,0x3008], and the BPF program is able to edit [0x8,0x3008]. Now, lets
allocate a chunk B with size 0x3000. This will succeed because consumer_pos
was edited ahead of time to pass the `new_prod_pos - cons_pos > rb->mask`
check. Chunk B will be in range [0x3008,0x6010], and the BPF program is able
to edit [0x3010,0x6010]. Due to the ring buffer memory layout mentioned
earlier, the ranges [0x0,0x4000] and [0x4000,0x8000] point to the same data
pages. This means that chunk B at [0x4000,0x4008] is chunk A's header.
bpf_ringbuf_submit() / bpf_ringbuf_discard() use the header's pg_off to then
locate the bpf_ringbuf itself via bpf_ringbuf_restore_from_rec(). Once chunk
B modified chunk A's header, then bpf_ringbuf_commit() refers to the wrong
page and could cause a crash.
Fix it by calculating the oldest pending_pos and check whether the range
from the oldest outstanding record to the newest would span beyond the ring
buffer size. If that is the case, then reject the request. We've tested with
the ring buffer benchmark in BPF selftests (./benchs/run_bench_ringbufs.sh)
before/after the fix and while it seems a bit slower on some benchmarks, it
is still not significantly enough to matter.
Fixes: 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it")
Reported-by: Bing-Jhong Billy Jheng <billy@starlabs.sg>
Reported-by: Muhammad Ramdhan <ramdhan@starlabs.sg>
Co-developed-by: Bing-Jhong Billy Jheng <billy@starlabs.sg>
Co-developed-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Bing-Jhong Billy Jheng <billy@starlabs.sg>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240621140828.18238-1-daniel@iogearbox.net
Signed-off-by: Dominique Martinet <dominique.martinet@atmark-techno.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6715df8d5d24655b9fd368e904028112b54c7de1 upstream.
This commits updates the following functions to allow reads from
uninitialized stack locations when env->allow_uninit_stack option is
enabled:
- check_stack_read_fixed_off()
- check_stack_range_initialized(), called from:
- check_stack_read_var_off()
- check_helper_mem_access()
Such change allows to relax logic in stacksafe() to treat STACK_MISC
and STACK_INVALID in a same way and make the following stack slot
configurations equivalent:
| Cached state | Current state |
| stack slot | stack slot |
|------------------+------------------|
| STACK_INVALID or | STACK_INVALID or |
| STACK_MISC | STACK_SPILL or |
| | STACK_MISC or |
| | STACK_ZERO or |
| | STACK_DYNPTR |
This leads to significant verification speed gains (see below).
The idea was suggested by Andrii Nakryiko [1] and initial patch was
created by Alexei Starovoitov [2].
Currently the env->allow_uninit_stack is allowed for programs loaded
by users with CAP_PERFMON or CAP_SYS_ADMIN capabilities.
A number of test cases from verifier/*.c were expecting uninitialized
stack access to be an error. These test cases were updated to execute
in unprivileged mode (thus preserving the tests).
The test progs/test_global_func10.c expected "invalid indirect read
from stack" error message because of the access to uninitialized
memory region. This error is no longer possible in privileged mode.
The test is updated to provoke an error "invalid indirect access to
stack" because of access to invalid stack address (such error is not
verified by progs/test_global_func*.c series of tests).
The following tests had to be removed because these can't be made
unprivileged:
- verifier/sock.c:
- "sk_storage_get(map, skb->sk, &stack_value, 1): partially init
stack_value"
BPF_PROG_TYPE_SCHED_CLS programs are not executed in unprivileged mode.
- verifier/var_off.c:
- "indirect variable-offset stack access, max_off+size > max_initialized"
- "indirect variable-offset stack access, uninitialized"
These tests verify that access to uninitialized stack values is
detected when stack offset is not a constant. However, variable
stack access is prohibited in unprivileged mode, thus these tests
are no longer valid.
* * *
Here is veristat log comparing this patch with current master on a
set of selftest binaries listed in tools/testing/selftests/bpf/veristat.cfg
and cilium BPF binaries (see [3]):
$ ./veristat -e file,prog,states -C -f 'states_pct<-30' master.log current.log
File Program States (A) States (B) States (DIFF)
-------------------------- -------------------------- ---------- ---------- ----------------
bpf_host.o tail_handle_ipv6_from_host 349 244 -105 (-30.09%)
bpf_host.o tail_handle_nat_fwd_ipv4 1320 895 -425 (-32.20%)
bpf_lxc.o tail_handle_nat_fwd_ipv4 1320 895 -425 (-32.20%)
bpf_sock.o cil_sock4_connect 70 48 -22 (-31.43%)
bpf_sock.o cil_sock4_sendmsg 68 46 -22 (-32.35%)
bpf_xdp.o tail_handle_nat_fwd_ipv4 1554 803 -751 (-48.33%)
bpf_xdp.o tail_lb_ipv4 6457 2473 -3984 (-61.70%)
bpf_xdp.o tail_lb_ipv6 7249 3908 -3341 (-46.09%)
pyperf600_bpf_loop.bpf.o on_event 287 145 -142 (-49.48%)
strobemeta.bpf.o on_event 15915 4772 -11143 (-70.02%)
strobemeta_nounroll2.bpf.o on_event 17087 3820 -13267 (-77.64%)
xdp_synproxy_kern.bpf.o syncookie_tc 21271 6635 -14636 (-68.81%)
xdp_synproxy_kern.bpf.o syncookie_xdp 23122 6024 -17098 (-73.95%)
-------------------------- -------------------------- ---------- ---------- ----------------
Note: I limited selection by states_pct<-30%.
Inspection of differences in pyperf600_bpf_loop behavior shows that
the following patch for the test removes almost all differences:
- a/tools/testing/selftests/bpf/progs/pyperf.h
+ b/tools/testing/selftests/bpf/progs/pyperf.h
@ -266,8 +266,8 @ int __on_event(struct bpf_raw_tracepoint_args *ctx)
}
if (event->pthread_match || !pidData->use_tls) {
- void* frame_ptr;
- FrameData frame;
+ void* frame_ptr = 0;
+ FrameData frame = {};
Symbol sym = {};
int cur_cpu = bpf_get_smp_processor_id();
W/o this patch the difference comes from the following pattern
(for different variables):
static bool get_frame_data(... FrameData *frame ...)
{
...
bpf_probe_read_user(&frame->f_code, ...);
if (!frame->f_code)
return false;
...
bpf_probe_read_user(&frame->co_name, ...);
if (frame->co_name)
...;
}
int __on_event(struct bpf_raw_tracepoint_args *ctx)
{
FrameData frame;
...
get_frame_data(... &frame ...) // indirectly via a bpf_loop & callback
...
}
SEC("raw_tracepoint/kfree_skb")
int on_event(struct bpf_raw_tracepoint_args* ctx)
{
...
ret |= __on_event(ctx);
ret |= __on_event(ctx);
...
}
With regards to value `frame->co_name` the following is important:
- Because of the conditional `if (!frame->f_code)` each call to
__on_event() produces two states, one with `frame->co_name` marked
as STACK_MISC, another with it as is (and marked STACK_INVALID on a
first call).
- The call to bpf_probe_read_user() does not mark stack slots
corresponding to `&frame->co_name` as REG_LIVE_WRITTEN but it marks
these slots as BPF_MISC, this happens because of the following loop
in the check_helper_call():
for (i = 0; i < meta.access_size; i++) {
err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
BPF_WRITE, -1, false);
if (err)
return err;
}
Note the size of the write, it is a one byte write for each byte
touched by a helper. The BPF_B write does not lead to write marks
for the target stack slot.
- Which means that w/o this patch when second __on_event() call is
verified `if (frame->co_name)` will propagate read marks first to a
stack slot with STACK_MISC marks and second to a stack slot with
STACK_INVALID marks and these states would be considered different.
[1] https://lore.kernel.org/bpf/CAEf4BzY3e+ZuC6HUa8dCiUovQRg2SzEk7M-dSkqNZyn=xEmnPA@mail.gmail.com/
[2] https://lore.kernel.org/bpf/CAADnVQKs2i1iuZ5SUGuJtxWVfGYR9kDgYKhq3rNV+kBLQCu7rA@mail.gmail.com/
[3] git@github.com:anakryiko/cilium.git
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Co-developed-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230219200427.606541-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cf3f9a593dab87a032d2b6a6fb205e7f3de4f0a1 upstream.
When mm_update_owner_next() is racing with swapoff (try_to_unuse()) or
/proc or ptrace or page migration (get_task_mm()), it is impossible to
find an appropriate task_struct in the loop whose mm_struct is the same as
the target mm_struct.
If the above race condition is combined with the stress-ng-zombie and
stress-ng-dup tests, such a long loop can easily cause a Hard Lockup in
write_lock_irq() for tasklist_lock.
Recognize this situation in advance and exit early.
Link: https://lkml.kernel.org/r/20240620122123.3877432-1-alexjlzheng@tencent.com
Signed-off-by: Jinliang Zheng <alexjlzheng@tencent.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tycho Andersen <tandersen@netflix.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d3882564a77c21eb746ba5364f3fa89b88de3d61 upstream.
Using sys_io_pgetevents() as the entry point for compat mode tasks
works almost correctly, but misses the sign extension for the min_nr
and nr arguments.
This was addressed on parisc by switching to
compat_sys_io_pgetevents_time64() in commit 6431e92fc827 ("parisc:
io_pgetevents_time64() needs compat syscall in 32-bit compat mode"),
as well as by using more sophisticated system call wrappers on x86 and
s390. However, arm64, mips, powerpc, sparc and riscv still have the
same bug.
Change all of them over to use compat_sys_io_pgetevents_time64()
like parisc already does. This was clearly the intention when the
function was originally added, but it got hooked up incorrectly in
the tables.
Cc: stable@vger.kernel.org
Fixes: 48166e6ea47d ("y2038: add 64-bit time_t syscalls to all 32-bit architectures")
Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>