commit 469693d8f62299709e8ba56d8fb3da9ea990213c upstream.
Due to
103a4908ad4d ("x86/head/64: Disable stack protection for head$(BITS).o")
kernel/head{32,64}.c are compiled with -fno-stack-protector to allow
a call to set_bringup_idt_handler(), which would otherwise have stack
protection enabled with CONFIG_STACKPROTECTOR_STRONG.
While sufficient for that case, there may still be issues with calls to
any external functions that were compiled with stack protection enabled
that in-turn make stack-protected calls, or if the exception handlers
set up by set_bringup_idt_handler() make calls to stack-protected
functions.
Subsequent patches for SEV-SNP CPUID validation support will introduce
both such cases. Attempting to disable stack protection for everything
in scope to address that is prohibitive since much of the code, like the
SEV-ES #VC handler, is shared code that remains in use after boot and
could benefit from having stack protection enabled. Attempting to inline
calls is brittle and can quickly balloon out to library/helper code
where that's not really an option.
Instead, re-enable stack protection for head32.c/head64.c, and make the
appropriate changes to ensure the segment used for the stack canary is
initialized in advance of any stack-protected C calls.
For head64.c:
- The BSP will enter from startup_64() and call into C code
(startup_64_setup_env()) shortly after setting up the stack, which
may result in calls to stack-protected code. Set up %gs early to allow
for this safely.
- APs will enter from secondary_startup_64*(), and %gs will be set up
soon after. There is one call to C code prior to %gs being setup
(__startup_secondary_64()), but it is only to fetch 'sme_me_mask'
global, so just load 'sme_me_mask' directly instead, and remove the
now-unused __startup_secondary_64() function.
For head32.c:
- BSPs/APs will set %fs to __BOOT_DS prior to any C calls. In recent
kernels, the compiler is configured to access the stack canary at
%fs:__stack_chk_guard [1], which overlaps with the initial per-cpu
'__stack_chk_guard' variable in the initial/"master" .data..percpu
area. This is sufficient to allow access to the canary for use
during initial startup, so no changes are needed there.
[1] 3fb0fdb3bbe7 ("x86/stackprotector/32: Make the canary into a regular percpu variable")
[ bp: Massage commit message. ]
Suggested-by: Joerg Roedel <jroedel@suse.de> #for 64-bit %gs set up
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220307213356.2797205-24-brijesh.singh@amd.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e32683c6f7d22ba624e0bfc58b02cf3348bdca63 upstream.
With binutils 2.26, RESERVE_BRK() causes a build failure:
/tmp/ccnGOKZ5.s: Assembler messages:
/tmp/ccnGOKZ5.s:98: Error: missing ')'
/tmp/ccnGOKZ5.s:98: Error: missing ')'
/tmp/ccnGOKZ5.s:98: Error: missing ')'
/tmp/ccnGOKZ5.s:98: Error: junk at end of line, first unrecognized
character is `U'
The problem is this line:
RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE)
Specifically, the INIT_PGT_BUF_SIZE macro which (via PAGE_SIZE's use
_AC()) has a "1UL", which makes older versions of the assembler unhappy.
Unfortunately the _AC() macro doesn't work for inline asm.
Inline asm was only needed here to convince the toolchain to add the
STT_NOBITS flag. However, if a C variable is placed in a section whose
name is prefixed with ".bss", GCC and Clang automatically set
STT_NOBITS. In fact, ".bss..page_aligned" already relies on this trick.
So fix the build failure (and simplify the macro) by allocating the
variable in C.
Also, add NOLOAD to the ".brk" output section clause in the linker
script. This is a failsafe in case the ".bss" prefix magic trick ever
stops working somehow. If there's a section type mismatch, the GNU
linker will force the ".brk" output section to be STT_NOBITS. The LLVM
linker will fail with a "section type mismatch" error.
Note this also changes the name of the variable from .brk.##name to
__brk_##name. The variable names aren't actually used anywhere, so it's
harmless.
Fixes: a1e2c031ec39 ("x86/mm: Simplify RESERVE_BRK()")
Reported-by: Joe Damato <jdamato@fastly.com>
Reported-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Joe Damato <jdamato@fastly.com>
Link: https://lore.kernel.org/r/22d07a44c80d8e8e1e82b9a806ddc8c6bbb2606e.1654759036.git.jpoimboe@kernel.org
[nathan: Fix trivial conflict due to lack of 81519f778830]
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a1e2c031ec3949b8c039b739c0b5bf9c30007b00 upstream.
RESERVE_BRK() reserves data in the .brk_reservation section. The data
is initialized to zero, like BSS, so the macro specifies 'nobits' to
prevent the data from taking up space in the vmlinux binary. The only
way to get the compiler to do that (without putting the variable in .bss
proper) is to use inline asm.
The macro also has a hack which encloses the inline asm in a discarded
function, which allows the size to be passed (global inline asm doesn't
allow inputs).
Remove the need for the discarded function hack by just stringifying the
size rather than supplying it as an input to the inline asm.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220506121631.133110232@infradead.org
[nathan: Resolve conflict due to lack of 2b6ff7dea670]
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>