commit 3415b10a03945b0da4a635e146750dfe5ce0f448 upstream.
After a recent change in clang to stop consuming all instances of '-S'
and '-c' [1], the stack protector scripts break due to the kernel's use
of -Werror=unused-command-line-argument to catch cases where flags are
not being properly consumed by the compiler driver:
$ echo | clang -o - -x c - -S -c -Werror=unused-command-line-argument
clang: error: argument unused during compilation: '-c' [-Werror,-Wunused-command-line-argument]
This results in CONFIG_STACKPROTECTOR getting disabled because
CONFIG_CC_HAS_SANE_STACKPROTECTOR is no longer set.
'-c' and '-S' both instruct the compiler to stop at different stages of
the pipeline ('-S' after compiling, '-c' after assembling), so having
them present together in the same command makes little sense. In this
case, the test wants to stop before assembling because it is looking at
the textual assembly output of the compiler for either '%fs' or '%gs',
so remove '-c' from the list of arguments to resolve the error.
All versions of GCC continue to work after this change, along with
versions of clang that do or do not contain the change mentioned above.
Cc: stable@vger.kernel.org
Fixes: 4f7fd4d7a791 ("[PATCH] Add the -fstack-protector option to the CFLAGS")
Fixes: 60a5317ff0f4 ("x86: implement x86_32 stack protector")
Link: 6461e53781 [1]
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 3fb0fdb3bbe7aed495109b3296b06c2409734023 ]
On 32-bit kernels, the stackprotector canary is quite nasty -- it is
stored at %gs:(20), which is nasty because 32-bit kernels use %fs for
percpu storage. It's even nastier because it means that whether %gs
contains userspace state or kernel state while running kernel code
depends on whether stackprotector is enabled (this is
CONFIG_X86_32_LAZY_GS), and this setting radically changes the way
that segment selectors work. Supporting both variants is a
maintenance and testing mess.
Merely rearranging so that percpu and the stack canary
share the same segment would be messy as the 32-bit percpu address
layout isn't currently compatible with putting a variable at a fixed
offset.
Fortunately, GCC 8.1 added options that allow the stack canary to be
accessed as %fs:__stack_chk_guard, effectively turning it into an ordinary
percpu variable. This lets us get rid of all of the code to manage the
stack canary GDT descriptor and the CONFIG_X86_32_LAZY_GS mess.
(That name is special. We could use any symbol we want for the
%fs-relative mode, but for CONFIG_SMP=n, gcc refuses to let us use any
name other than __stack_chk_guard.)
Forcibly disable stackprotector on older compilers that don't support
the new options and turn the stack canary into a percpu variable. The
"lazy GS" approach is now used for all 32-bit configurations.
Also makes load_gs_index() work on 32-bit kernels. On 64-bit kernels,
it loads the GS selector and updates the user GSBASE accordingly. (This
is unchanged.) On 32-bit kernels, it loads the GS selector and updates
GSBASE, which is now always the user base. This means that the overall
effect is the same on 32-bit and 64-bit, which avoids some ifdeffery.
[ bp: Massage commit message. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/c0ff7dba14041c7e5d1cae5d4df052f03759bef3.1613243844.git.luto@kernel.org
Stable-dep-of: e3f269ed0acc ("x86/pm: Work around false positive kmemleak report in msr_build_context()")
Signed-off-by: Sasha Levin <sashal@kernel.org>