schedhorizon: Introduce schedhorizon cpufreq governor

* This is a modified version of schedutil, introducing two new tunables: "efficient_freq" and "up_delay".
* Only raise cpufreq to the non-efficient one (higher than effcient frequencies) if the governor keeps requiring non-efficient frequencies for more than up_delay time.
* Override the new frequencies with the efficient one if the consecutive request time doesn't reach up_delay.
* The two tunables support multiple args, e.g. you can set "1248000 1401600" for "efficient_freq" and set "50 60" for "up_delay", which means it would wait 50ms before raising the frequency to 1248mhz and wait for 60ms before raising the frequency to 1401mhz.

[Flopster101: move the kconfig entry to the proper section.]
This commit is contained in:
ztc1997 2024-04-08 21:48:25 +08:00 committed by Ksawlii
parent f32e4cfc40
commit 2a7073f6d6
7 changed files with 1040 additions and 12 deletions

View file

@ -132,6 +132,16 @@ config CPU_FREQ_DEFAULT_GOV_ENERGYAWARE
have a look at the help section of that governor. The fallback
governor will be 'performance'.
config CPU_FREQ_DEFAULT_GOV_SCHEDHORIZON
bool "schedhorizon"
depends on SMP
select CPU_FREQ_GOV_SCHEDHORIZON
select CPU_FREQ_GOV_PERFORMANCE
help
Use the 'schedhorizon' CPUFreq governor by default. If unsure,
have a look at the help section of that governor. The fallback
governor will be 'performance'.
endchoice
config CPU_FREQ_GOV_PERFORMANCE
@ -250,6 +260,28 @@ config CPU_FREQ_GOV_ENERGYAWARE
If in doubt, say N.
config CPU_FREQ_GOV_SCHEDHORIZON
bool "'schedhorizon' cpufreq policy governor"
depends on CPU_FREQ && SMP
select CPU_FREQ_GOV_ATTR_SET
select IRQ_WORK
help
This is a modified version of schedutil, introducing two new tunables:
"efficient_freq" and "up_delay".
Only raise cpufreq to the non-efficient one (higher than effcient frequencies)
if the governor keeps requiring non-efficient frequencies for more than up_delay time.
Override the new frequencies with the efficient one if the consecutive request time
doesn't reach up_delay.
The two tunables support multiple args, e.g. you can set "1248000 1401600" for
"efficient_freq" and set "50 60" for "up_delay", which means it would wait 50ms
before raising the frequency to 1248mhz and wait for 60ms before raising the frequency
to 1401mhz.
If in doubt, say N.
comment "CPU frequency scaling drivers"

View file

@ -100,7 +100,7 @@ int sched_pelt_multiplier(struct ctl_table *table, int write, void *buffer,
size_t *lenp, loff_t *ppos);
#endif
#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
#if defined(CONFIG_ENERGY_MODEL) && (defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) || defined(CONFIG_CPU_FREQ_GOV_SCHEDHORIZON))
extern unsigned int sysctl_sched_energy_aware;
int sched_energy_aware_handler(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos);

View file

@ -33,6 +33,7 @@ obj-$(CONFIG_SCHED_DEBUG) += debug.o
obj-$(CONFIG_CGROUP_CPUACCT) += cpuacct.o
obj-$(CONFIG_CPU_FREQ) += cpufreq.o
obj-$(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) += cpufreq_schedutil.o
obj-$(CONFIG_CPU_FREQ_GOV_SCHEDHORIZON) += cpufreq_schedhorizon.o
obj-$(CONFIG_MEMBARRIER) += membarrier.o
obj-$(CONFIG_CPU_ISOLATION) += isolation.o
obj-$(CONFIG_PSI) += psi.o

View file

@ -0,0 +1,995 @@
// SPDX-License-Identifier: GPL-2.0
/*
* CPUFreq governor based on scheduler-provided CPU utilization data.
*
* Copyright (C) 2016, Intel Corporation
* Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "sched.h"
#include <linux/sched/cpufreq.h>
#include <trace/events/power.h>
#include <trace/hooks/sched.h>
static unsigned int default_efficient_freq[] = {0};
static u64 default_up_delay[] = {0};
struct sugov_tunables {
struct gov_attr_set attr_set;
unsigned int rate_limit_us;
unsigned int *efficient_freq;
int nefficient_freq;
u64 *up_delay;
int nup_delay;
int current_step;
};
struct sugov_policy {
struct cpufreq_policy *policy;
struct sugov_tunables *tunables;
struct list_head tunables_hook;
raw_spinlock_t update_lock; /* For shared policies */
u64 last_freq_update_time;
s64 freq_update_delay_ns;
unsigned int next_freq;
unsigned int cached_raw_freq;
u64 first_hp_request_time;
/* The next fields are only needed if fast switch cannot be used: */
struct irq_work irq_work;
struct kthread_work work;
struct mutex work_lock;
struct kthread_worker worker;
struct task_struct *thread;
bool work_in_progress;
bool limits_changed;
bool need_freq_update;
};
struct sugov_cpu {
struct update_util_data update_util;
struct sugov_policy *sg_policy;
unsigned int cpu;
u64 last_update;
unsigned long bw_dl;
unsigned long max;
/* The field below is for single-CPU policies only: */
#ifdef CONFIG_NO_HZ_COMMON
unsigned long saved_idle_calls;
#endif
};
static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
static inline int match_nearest_efficient_step(int freq, int maxstep, int *freq_table)
{
int i;
for (i=0; i<maxstep; i++) {
if (freq_table[i] >= freq)
break;
}
return i;
}
static inline void do_freq_limit(struct sugov_policy *sg_policy, unsigned int *freq, u64 time)
{
if (*freq > sg_policy->tunables->efficient_freq[sg_policy->tunables->current_step] && !sg_policy->first_hp_request_time) {
/* First request */
*freq = sg_policy->tunables->efficient_freq[sg_policy->tunables->current_step];
sg_policy->first_hp_request_time = time;
return;
}
if (*freq < sg_policy->tunables->efficient_freq[sg_policy->tunables->current_step]) {
/* It's already under current efficient frequency */
/* Goto a lower one */
sg_policy->tunables->current_step = match_nearest_efficient_step(*freq, sg_policy->tunables->nefficient_freq, sg_policy->tunables->efficient_freq);
sg_policy->first_hp_request_time = 0;
return;
}
if ((sg_policy->first_hp_request_time
&& time < sg_policy->first_hp_request_time + sg_policy->tunables->up_delay[sg_policy->tunables->current_step])){
/* Restrict it */
*freq = sg_policy->tunables->efficient_freq[sg_policy->tunables->current_step];
return;
}
if (sg_policy->tunables->current_step + 1 <= sg_policy->tunables->nefficient_freq - 1
&& sg_policy->tunables->current_step + 1 <= sg_policy->tunables->nup_delay - 1) {
/* Unlock a higher efficient frequency */
sg_policy->tunables->current_step++;
sg_policy->first_hp_request_time = time;
if (*freq > sg_policy->tunables->efficient_freq[sg_policy->tunables->current_step])
*freq = sg_policy->tunables->efficient_freq[sg_policy->tunables->current_step];
return;
}
}
/************************ Governor internals ***********************/
static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
{
s64 delta_ns;
/*
* Since cpufreq_update_util() is called with rq->lock held for
* the @target_cpu, our per-CPU data is fully serialized.
*
* However, drivers cannot in general deal with cross-CPU
* requests, so while get_next_freq() will work, our
* sugov_update_commit() call may not for the fast switching platforms.
*
* Hence stop here for remote requests if they aren't supported
* by the hardware, as calculating the frequency is pointless if
* we cannot in fact act on it.
*
* This is needed on the slow switching platforms too to prevent CPUs
* going offline from leaving stale IRQ work items behind.
*/
if (!cpufreq_this_cpu_can_update(sg_policy->policy))
return false;
if (unlikely(sg_policy->limits_changed)) {
sg_policy->limits_changed = false;
sg_policy->need_freq_update = true;
return true;
}
/* If the last frequency wasn't set yet then we can still amend it */
if (sg_policy->work_in_progress)
return true;
delta_ns = time - sg_policy->last_freq_update_time;
return delta_ns >= sg_policy->freq_update_delay_ns;
}
static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
unsigned int next_freq)
{
if (!sg_policy->need_freq_update) {
if (sg_policy->next_freq == next_freq)
return false;
} else {
sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
}
sg_policy->next_freq = next_freq;
sg_policy->last_freq_update_time = time;
return true;
}
static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
unsigned int next_freq)
{
if (sugov_update_next_freq(sg_policy, time, next_freq))
cpufreq_driver_fast_switch(sg_policy->policy, next_freq);
}
static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
unsigned int next_freq)
{
if (!sugov_update_next_freq(sg_policy, time, next_freq))
return;
if (!sg_policy->work_in_progress) {
sg_policy->work_in_progress = true;
irq_work_queue(&sg_policy->irq_work);
}
}
/**
* get_next_freq - Compute a new frequency for a given cpufreq policy.
* @sg_policy: schedhorizon policy object to compute the new frequency for.
* @util: Current CPU utilization.
* @max: CPU capacity.
*
* If the utilization is frequency-invariant, choose the new frequency to be
* proportional to it, that is
*
* next_freq = C * max_freq * util / max
*
* Otherwise, approximate the would-be frequency-invariant utilization by
* util_raw * (curr_freq / max_freq) which leads to
*
* next_freq = C * curr_freq * util_raw / max
*
* Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
*
* The lowest driver-supported frequency which is equal or greater than the raw
* next_freq (as calculated above) is returned, subject to policy min/max and
* cpufreq driver limitations.
*/
static unsigned int get_next_freq(struct sugov_policy *sg_policy,
unsigned long util, unsigned long max, u64 time)
{
struct cpufreq_policy *policy = sg_policy->policy;
unsigned int freq = arch_scale_freq_invariant() ?
policy->cpuinfo.max_freq : policy->cur;
unsigned long next_freq = 0;
trace_android_vh_map_util_freq(util, freq, max, &next_freq, policy,
&sg_policy->need_freq_update);
if (next_freq)
freq = next_freq;
else
freq = map_util_freq(util, freq, max);
do_freq_limit(sg_policy, &freq, time);
if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
return sg_policy->next_freq;
sg_policy->cached_raw_freq = freq;
return cpufreq_driver_resolve_freq(policy, freq);
}
/*
* This function computes an effective utilization for the given CPU, to be
* used for frequency selection given the linear relation: f = u * f_max.
*
* The scheduler tracks the following metrics:
*
* cpu_util_{cfs,rt,dl,irq}()
* cpu_bw_dl()
*
* Where the cfs,rt and dl util numbers are tracked with the same metric and
* synchronized windows and are thus directly comparable.
*
* The cfs,rt,dl utilization are the running times measured with rq->clock_task
* which excludes things like IRQ and steal-time. These latter are then accrued
* in the irq utilization.
*
* The DL bandwidth number otoh is not a measured metric but a value computed
* based on the task model parameters and gives the minimal utilization
* required to meet deadlines.
*/
unsigned long schedhorizon_cpu_util(int cpu, unsigned long util_cfs,
unsigned long max, enum schedutil_type type,
struct task_struct *p)
{
unsigned long dl_util, util, irq;
struct rq *rq = cpu_rq(cpu);
if (!uclamp_is_used() &&
type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
return max;
}
/*
* Early check to see if IRQ/steal time saturates the CPU, can be
* because of inaccuracies in how we track these -- see
* update_irq_load_avg().
*/
irq = cpu_util_irq(rq);
if (unlikely(irq >= max))
return max;
/*
* Because the time spend on RT/DL tasks is visible as 'lost' time to
* CFS tasks and we use the same metric to track the effective
* utilization (PELT windows are synchronized) we can directly add them
* to obtain the CPU's actual utilization.
*
* CFS and RT utilization can be boosted or capped, depending on
* utilization clamp constraints requested by currently RUNNABLE
* tasks.
* When there are no CFS RUNNABLE tasks, clamps are released and
* frequency will be gracefully reduced with the utilization decay.
*/
util = util_cfs + cpu_util_rt(rq);
if (type == FREQUENCY_UTIL)
util = uclamp_rq_util_with(rq, util, p);
dl_util = cpu_util_dl(rq);
/*
* For frequency selection we do not make cpu_util_dl() a permanent part
* of this sum because we want to use cpu_bw_dl() later on, but we need
* to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
* that we select f_max when there is no idle time.
*
* NOTE: numerical errors or stop class might cause us to not quite hit
* saturation when we should -- something for later.
*/
if (util + dl_util >= max)
return max;
/*
* OTOH, for energy computation we need the estimated running time, so
* include util_dl and ignore dl_bw.
*/
if (type == ENERGY_UTIL)
util += dl_util;
/*
* There is still idle time; further improve the number by using the
* irq metric. Because IRQ/steal time is hidden from the task clock we
* need to scale the task numbers:
*
* max - irq
* U' = irq + --------- * U
* max
*/
util = scale_irq_capacity(util, irq, max);
util += irq;
/*
* Bandwidth required by DEADLINE must always be granted while, for
* FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
* to gracefully reduce the frequency when no tasks show up for longer
* periods of time.
*
* Ideally we would like to set bw_dl as min/guaranteed freq and util +
* bw_dl as requested freq. However, cpufreq is not yet ready for such
* an interface. So, we only do the latter for now.
*/
if (type == FREQUENCY_UTIL)
util += cpu_bw_dl(rq);
return min(max, util);
}
EXPORT_SYMBOL_GPL(schedhorizon_cpu_util);
static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
{
struct rq *rq = cpu_rq(sg_cpu->cpu);
unsigned long util = cpu_util_cfs(rq);
unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
sg_cpu->max = max;
sg_cpu->bw_dl = cpu_bw_dl(rq);
return schedhorizon_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
}
#ifdef CONFIG_NO_HZ_COMMON
static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
{
unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
bool ret = idle_calls == sg_cpu->saved_idle_calls;
sg_cpu->saved_idle_calls = idle_calls;
return ret;
}
#else
static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
#endif /* CONFIG_NO_HZ_COMMON */
/*
* Make sugov_should_update_freq() ignore the rate limit when DL
* has increased the utilization.
*/
static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
{
if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
sg_policy->limits_changed = true;
}
static void sugov_update_single(struct update_util_data *hook, u64 time,
unsigned int flags)
{
struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
struct sugov_policy *sg_policy = sg_cpu->sg_policy;
unsigned long util, max;
unsigned int next_f;
unsigned int cached_freq = sg_policy->cached_raw_freq;
sg_cpu->last_update = time;
ignore_dl_rate_limit(sg_cpu, sg_policy);
if (!sugov_should_update_freq(sg_policy, time))
return;
util = sugov_get_util(sg_cpu);
max = sg_cpu->max;
next_f = get_next_freq(sg_policy, util, max, time);
/*
* Do not reduce the frequency if the CPU has not been idle
* recently, as the reduction is likely to be premature then.
*/
if (sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
next_f = sg_policy->next_freq;
/* Restore cached freq as next_freq has changed */
sg_policy->cached_raw_freq = cached_freq;
}
/*
* This code runs under rq->lock for the target CPU, so it won't run
* concurrently on two different CPUs for the same target and it is not
* necessary to acquire the lock in the fast switch case.
*/
if (sg_policy->policy->fast_switch_enabled) {
sugov_fast_switch(sg_policy, time, next_f);
} else {
raw_spin_lock(&sg_policy->update_lock);
sugov_deferred_update(sg_policy, time, next_f);
raw_spin_unlock(&sg_policy->update_lock);
}
}
static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
{
struct sugov_policy *sg_policy = sg_cpu->sg_policy;
struct cpufreq_policy *policy = sg_policy->policy;
unsigned long util = 0, max = 1;
unsigned int j;
for_each_cpu(j, policy->cpus) {
struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
unsigned long j_util, j_max;
j_util = sugov_get_util(j_sg_cpu);
j_max = j_sg_cpu->max;
if (j_util * max > j_max * util) {
util = j_util;
max = j_max;
}
}
return get_next_freq(sg_policy, util, max, time);
}
static void
sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
{
struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
struct sugov_policy *sg_policy = sg_cpu->sg_policy;
unsigned int next_f;
raw_spin_lock(&sg_policy->update_lock);
sg_cpu->last_update = time;
ignore_dl_rate_limit(sg_cpu, sg_policy);
if (sugov_should_update_freq(sg_policy, time)) {
next_f = sugov_next_freq_shared(sg_cpu, time);
if (sg_policy->policy->fast_switch_enabled)
sugov_fast_switch(sg_policy, time, next_f);
else
sugov_deferred_update(sg_policy, time, next_f);
}
raw_spin_unlock(&sg_policy->update_lock);
}
static void sugov_work(struct kthread_work *work)
{
struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
unsigned int freq;
unsigned long flags;
/*
* Hold sg_policy->update_lock shortly to handle the case where:
* incase sg_policy->next_freq is read here, and then updated by
* sugov_deferred_update() just before work_in_progress is set to false
* here, we may miss queueing the new update.
*
* Note: If a work was queued after the update_lock is released,
* sugov_work() will just be called again by kthread_work code; and the
* request will be proceed before the sugov thread sleeps.
*/
raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
freq = sg_policy->next_freq;
sg_policy->work_in_progress = false;
raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
mutex_lock(&sg_policy->work_lock);
__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
mutex_unlock(&sg_policy->work_lock);
}
static void sugov_irq_work(struct irq_work *irq_work)
{
struct sugov_policy *sg_policy;
sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
kthread_queue_work(&sg_policy->worker, &sg_policy->work);
}
static unsigned int *resolve_data_freq (const char *buf, int *num_ret,size_t count)
{
const char *cp;
unsigned int *output;
int num = 1, i;
cp = buf;
while ((cp = strpbrk(cp + 1, " ")))
num++;
output = kmalloc(num * sizeof(unsigned int), GFP_KERNEL);
cp = buf;
i = 0;
while (i < num && cp-buf<count) {
if (sscanf(cp, "%u", &output[i++]) != 1)
goto err_kfree;
cp = strpbrk(cp, " ");
if (!cp)
break;
cp++;
}
*num_ret = num;
return output;
err_kfree:
kfree(output);
return NULL;
}
static u64 *resolve_data_delay (const char *buf, int *num_ret,size_t count)
{
const char *cp;
u64 *output;
int num = 1, i;
pr_err("Started");
cp = buf;
while ((cp = strpbrk(cp + 1, " ")))
num++;
output = kzalloc(num * sizeof(u64), GFP_KERNEL);
cp = buf;
i = 0;
pr_err("Before while");
while (i < num && cp-buf < count) {
if (sscanf(cp, "%llu", &output[i]) == 1) {
output[i] = output[i] * NSEC_PER_MSEC;
pr_info("Got: %llu", output[i]);
i++;
} else {
goto err_kfree;
}
cp = strpbrk(cp, " ");
if (!cp)
break;
cp++;
}
*num_ret = num;
return output;
err_kfree:
kfree(output);
return NULL;
}
/************************** sysfs interface ************************/
static struct sugov_tunables *global_tunables;
static DEFINE_MUTEX(global_tunables_lock);
static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
{
return container_of(attr_set, struct sugov_tunables, attr_set);
}
static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
return sprintf(buf, "%u\n", tunables->rate_limit_us);
}
static ssize_t
rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
struct sugov_policy *sg_policy;
unsigned int rate_limit_us;
if (kstrtouint(buf, 10, &rate_limit_us))
return -EINVAL;
tunables->rate_limit_us = rate_limit_us;
list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
return count;
}
static ssize_t efficient_freq_show(struct gov_attr_set *attr_set, char *buf)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
int i;
ssize_t ret = 0;
for (i = 0; i < tunables->nefficient_freq; i++)
ret += sprintf(buf + ret, "%llu%s", tunables->efficient_freq[i], " ");
sprintf(buf + ret - 1, "\n");
return ret;
}
static ssize_t up_delay_show(struct gov_attr_set *attr_set, char *buf)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
int i;
ssize_t ret = 0;
for (i = 0; i < tunables->nup_delay; i++)
ret += sprintf(buf + ret, "%u%s", tunables->up_delay[i] / NSEC_PER_MSEC, " ");
sprintf(buf + ret - 1, "\n");
return ret;
}
static ssize_t efficient_freq_store(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
int new_num;
unsigned int *new_efficient_freq = NULL, *old;
new_efficient_freq = resolve_data_freq(buf, &new_num, count);
if (new_efficient_freq) {
old = tunables->efficient_freq;
tunables->efficient_freq = new_efficient_freq;
tunables->nefficient_freq = new_num;
tunables->current_step = 0;
if (old != default_efficient_freq)
kfree(old);
}
return count;
}
static ssize_t up_delay_store(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
int new_num;
u64 *new_up_delay = NULL, *old;
new_up_delay = resolve_data_delay(buf, &new_num, count);
if (new_up_delay) {
old = tunables->up_delay;
tunables->up_delay = new_up_delay;
tunables->nup_delay = new_num;
tunables->current_step = 0;
if (old != default_up_delay)
kfree(old);
}
return count;
}
static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
static struct governor_attr efficient_freq = __ATTR_RW(efficient_freq);
static struct governor_attr up_delay = __ATTR_RW(up_delay);
static struct attribute *sugov_attrs[] = {
&rate_limit_us.attr,
&efficient_freq.attr,
&up_delay.attr,
NULL
};
ATTRIBUTE_GROUPS(sugov);
static void sugov_tunables_free(struct kobject *kobj)
{
struct gov_attr_set *attr_set = container_of(kobj, struct gov_attr_set, kobj);
kfree(to_sugov_tunables(attr_set));
}
static struct kobj_type sugov_tunables_ktype = {
.default_groups = sugov_groups,
.sysfs_ops = &governor_sysfs_ops,
.release = &sugov_tunables_free,
};
/********************** cpufreq governor interface *********************/
struct cpufreq_governor schedhorizon_gov;
static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy;
sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
if (!sg_policy)
return NULL;
sg_policy->policy = policy;
raw_spin_lock_init(&sg_policy->update_lock);
return sg_policy;
}
static void sugov_policy_free(struct sugov_policy *sg_policy)
{
kfree(sg_policy);
}
static int sugov_kthread_create(struct sugov_policy *sg_policy)
{
struct task_struct *thread;
struct sched_attr attr = {
.size = sizeof(struct sched_attr),
.sched_policy = SCHED_DEADLINE,
.sched_flags = SCHED_FLAG_SUGOV,
.sched_nice = 0,
.sched_priority = 0,
/*
* Fake (unused) bandwidth; workaround to "fix"
* priority inheritance.
*/
.sched_runtime = 1000000,
.sched_deadline = 10000000,
.sched_period = 10000000,
};
struct cpufreq_policy *policy = sg_policy->policy;
int ret;
/* kthread only required for slow path */
if (policy->fast_switch_enabled)
return 0;
kthread_init_work(&sg_policy->work, sugov_work);
kthread_init_worker(&sg_policy->worker);
thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
"sugov:%d",
cpumask_first(policy->related_cpus));
if (IS_ERR(thread)) {
pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
return PTR_ERR(thread);
}
ret = sched_setattr_nocheck(thread, &attr);
if (ret) {
kthread_stop(thread);
pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
return ret;
}
sg_policy->thread = thread;
if (!policy->dvfs_possible_from_any_cpu)
kthread_bind_mask(thread, policy->related_cpus);
init_irq_work(&sg_policy->irq_work, sugov_irq_work);
mutex_init(&sg_policy->work_lock);
wake_up_process(thread);
return 0;
}
static void sugov_kthread_stop(struct sugov_policy *sg_policy)
{
/* kthread only required for slow path */
if (sg_policy->policy->fast_switch_enabled)
return;
kthread_flush_worker(&sg_policy->worker);
kthread_stop(sg_policy->thread);
mutex_destroy(&sg_policy->work_lock);
}
static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
{
struct sugov_tunables *tunables;
tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
if (tunables) {
gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
if (!have_governor_per_policy())
global_tunables = tunables;
}
return tunables;
}
static void sugov_clear_global_tunables(void)
{
if (!have_governor_per_policy())
global_tunables = NULL;
}
static int sugov_init(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy;
struct sugov_tunables *tunables;
int ret = 0;
/* State should be equivalent to EXIT */
if (policy->governor_data)
return -EBUSY;
cpufreq_enable_fast_switch(policy);
sg_policy = sugov_policy_alloc(policy);
if (!sg_policy) {
ret = -ENOMEM;
goto disable_fast_switch;
}
ret = sugov_kthread_create(sg_policy);
if (ret)
goto free_sg_policy;
mutex_lock(&global_tunables_lock);
if (global_tunables) {
if (WARN_ON(have_governor_per_policy())) {
ret = -EINVAL;
goto stop_kthread;
}
policy->governor_data = sg_policy;
sg_policy->tunables = global_tunables;
gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
goto out;
}
tunables = sugov_tunables_alloc(sg_policy);
if (!tunables) {
ret = -ENOMEM;
goto stop_kthread;
}
tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
tunables->efficient_freq = default_efficient_freq;
tunables->nefficient_freq = ARRAY_SIZE(default_efficient_freq);
tunables->up_delay = default_up_delay;
tunables->nup_delay = ARRAY_SIZE(default_up_delay);
policy->governor_data = sg_policy;
sg_policy->tunables = tunables;
ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
get_governor_parent_kobj(policy), "%s",
schedhorizon_gov.name);
if (ret)
goto fail;
out:
mutex_unlock(&global_tunables_lock);
return 0;
fail:
kobject_put(&tunables->attr_set.kobj);
policy->governor_data = NULL;
sugov_clear_global_tunables();
stop_kthread:
sugov_kthread_stop(sg_policy);
mutex_unlock(&global_tunables_lock);
free_sg_policy:
sugov_policy_free(sg_policy);
disable_fast_switch:
cpufreq_disable_fast_switch(policy);
pr_err("initialization failed (error %d)\n", ret);
return ret;
}
static void sugov_exit(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
struct sugov_tunables *tunables = sg_policy->tunables;
unsigned int count;
mutex_lock(&global_tunables_lock);
count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
policy->governor_data = NULL;
if (!count)
sugov_clear_global_tunables();
mutex_unlock(&global_tunables_lock);
sugov_kthread_stop(sg_policy);
sugov_policy_free(sg_policy);
cpufreq_disable_fast_switch(policy);
}
static int sugov_start(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
unsigned int cpu;
sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
sg_policy->last_freq_update_time = 0;
sg_policy->next_freq = 0;
sg_policy->work_in_progress = false;
sg_policy->limits_changed = false;
sg_policy->cached_raw_freq = 0;
sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
for_each_cpu(cpu, policy->cpus) {
struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
memset(sg_cpu, 0, sizeof(*sg_cpu));
sg_cpu->cpu = cpu;
sg_cpu->sg_policy = sg_policy;
}
for_each_cpu(cpu, policy->cpus) {
struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
policy_is_shared(policy) ?
sugov_update_shared :
sugov_update_single);
}
return 0;
}
static void sugov_stop(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
unsigned int cpu;
for_each_cpu(cpu, policy->cpus)
cpufreq_remove_update_util_hook(cpu);
synchronize_rcu();
if (!policy->fast_switch_enabled) {
irq_work_sync(&sg_policy->irq_work);
kthread_cancel_work_sync(&sg_policy->work);
}
}
static void sugov_limits(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
if (!policy->fast_switch_enabled) {
mutex_lock(&sg_policy->work_lock);
cpufreq_policy_apply_limits(policy);
mutex_unlock(&sg_policy->work_lock);
}
sg_policy->limits_changed = true;
}
struct cpufreq_governor schedhorizon_gov = {
.name = "schedhorizon",
.owner = THIS_MODULE,
.flags = CPUFREQ_GOV_DYNAMIC_SWITCHING,
.init = sugov_init,
.exit = sugov_exit,
.start = sugov_start,
.stop = sugov_stop,
.limits = sugov_limits,
};
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDHORIZON
struct cpufreq_governor *cpufreq_default_governor(void)
{
return &schedhorizon_gov;
}
#endif
cpufreq_governor_init(schedhorizon_gov);

View file

@ -233,7 +233,7 @@ static inline void update_avg(u64 *avg, u64 sample)
static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
{
#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
#if defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) || defined(CONFIG_CPU_FREQ_GOV_SCHEDHORIZON)
return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
#else
return false;
@ -2660,7 +2660,7 @@ enum schedutil_type {
ENERGY_UTIL,
};
#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
#if defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) || defined(CONFIG_CPU_FREQ_GOV_SCHEDHORIZON)
unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
unsigned long max, enum schedutil_type type,
@ -2692,14 +2692,14 @@ static inline unsigned long cpu_util_rt(struct rq *rq)
{
return READ_ONCE(rq->avg_rt.util_avg);
}
#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL || CONFIG_CPU_FREQ_GOV_SCHEDHORIZON */
static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
unsigned long max, enum schedutil_type type,
struct task_struct *p)
{
return 0;
}
#endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
#endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL || CONFIG_CPU_FREQ_GOV_SCHEDHORIZON */
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
static inline unsigned long cpu_util_irq(struct rq *rq)
@ -2729,7 +2729,7 @@ unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned
}
#endif
#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
#if defined(CONFIG_ENERGY_MODEL) && (defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) || defined(CONFIG_CPU_FREQ_GOV_SCHEDHORIZON))
#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
@ -2740,12 +2740,12 @@ static inline bool sched_energy_enabled(void)
return static_branch_unlikely(&sched_energy_present);
}
#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL || CONFIG_CPU_FREQ_GOV_SCHEDHORIZON) */
#define perf_domain_span(pd) NULL
static inline bool sched_energy_enabled(void) { return false; }
#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL || CONFIG_CPU_FREQ_GOV_SCHEDHORIZON */
#ifdef CONFIG_MEMBARRIER
/*

View file

@ -210,7 +210,7 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
return 1;
}
#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
#if defined(CONFIG_ENERGY_MODEL) && (defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) || defined(CONFIG_CPU_FREQ_GOV_SCHEDHORIZON))
DEFINE_STATIC_KEY_FALSE(sched_energy_present);
unsigned int sysctl_sched_energy_aware = 1;
DEFINE_MUTEX(sched_energy_mutex);
@ -426,7 +426,7 @@ free:
}
#else
static void free_pd(struct perf_domain *pd) { }
#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
#endif /* CONFIG_ENERGY_MODEL && (CONFIG_CPU_FREQ_GOV_SCHEDUTIL || CONFIG_CPU_FREQ_GOV_SCHEDHORIZON) */
static void free_rootdomain(struct rcu_head *rcu)
{
@ -2278,7 +2278,7 @@ match2:
;
}
#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
#if defined(CONFIG_ENERGY_MODEL) && (defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) || defined(CONFIG_CPU_FREQ_GOV_SCHEDHORIZON))
/* Build perf. domains: */
for (i = 0; i < ndoms_new; i++) {
for (j = 0; j < n && !sched_energy_update; j++) {

View file

@ -2016,7 +2016,7 @@ static struct ctl_table kern_table[] = {
.extra1 = SYSCTL_ONE,
},
#endif
#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
#if defined(CONFIG_ENERGY_MODEL) && (defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) || defined(CONFIG_CPU_FREQ_GOV_SCHEDHORIZON))
{
.procname = "sched_energy_aware",
.data = &sysctl_sched_energy_aware,