281 lines
6.3 KiB
C
281 lines
6.3 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/* Copyright (c) 2010, 2014 The Linux Foundation. All rights reserved. */
|
||
|
|
||
|
#include <linux/console.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/kfifo.h>
|
||
|
#include <linux/moduleparam.h>
|
||
|
#include <linux/serial.h>
|
||
|
#include <linux/serial_core.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
|
||
|
#include <asm/dcc.h>
|
||
|
#include <asm/processor.h>
|
||
|
|
||
|
#include "hvc_console.h"
|
||
|
|
||
|
/*
|
||
|
* Disable DCC driver at runtime. Want driver enabled for GKI, but some devices
|
||
|
* do not support the registers and crash when driver pokes the registers
|
||
|
*/
|
||
|
static bool enable;
|
||
|
module_param(enable, bool, 0444);
|
||
|
|
||
|
/* DCC Status Bits */
|
||
|
#define DCC_STATUS_RX (1 << 30)
|
||
|
#define DCC_STATUS_TX (1 << 29)
|
||
|
|
||
|
static void dcc_uart_console_putchar(struct uart_port *port, int ch)
|
||
|
{
|
||
|
while (__dcc_getstatus() & DCC_STATUS_TX)
|
||
|
cpu_relax();
|
||
|
|
||
|
__dcc_putchar(ch);
|
||
|
}
|
||
|
|
||
|
static void dcc_early_write(struct console *con, const char *s, unsigned n)
|
||
|
{
|
||
|
struct earlycon_device *dev = con->data;
|
||
|
|
||
|
uart_console_write(&dev->port, s, n, dcc_uart_console_putchar);
|
||
|
}
|
||
|
|
||
|
static int __init dcc_early_console_setup(struct earlycon_device *device,
|
||
|
const char *opt)
|
||
|
{
|
||
|
device->con->write = dcc_early_write;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
EARLYCON_DECLARE(dcc, dcc_early_console_setup);
|
||
|
|
||
|
static int hvc_dcc_put_chars(uint32_t vt, const char *buf, int count)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < count; i++) {
|
||
|
while (__dcc_getstatus() & DCC_STATUS_TX)
|
||
|
cpu_relax();
|
||
|
|
||
|
__dcc_putchar(buf[i]);
|
||
|
}
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
static int hvc_dcc_get_chars(uint32_t vt, char *buf, int count)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < count; ++i)
|
||
|
if (__dcc_getstatus() & DCC_STATUS_RX)
|
||
|
buf[i] = __dcc_getchar();
|
||
|
else
|
||
|
break;
|
||
|
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check if the DCC is enabled. If CONFIG_HVC_DCC_SERIALIZE_SMP is enabled,
|
||
|
* then we assume then this function will be called first on core 0. That
|
||
|
* way, dcc_core0_available will be true only if it's available on core 0.
|
||
|
*/
|
||
|
static bool hvc_dcc_check(void)
|
||
|
{
|
||
|
unsigned long time = jiffies + (HZ / 10);
|
||
|
|
||
|
#ifdef CONFIG_HVC_DCC_SERIALIZE_SMP
|
||
|
static bool dcc_core0_available;
|
||
|
|
||
|
/*
|
||
|
* If we're not on core 0, but we previously confirmed that DCC is
|
||
|
* active, then just return true.
|
||
|
*/
|
||
|
if (smp_processor_id() && dcc_core0_available)
|
||
|
return true;
|
||
|
#endif
|
||
|
|
||
|
/* Write a test character to check if it is handled */
|
||
|
__dcc_putchar('\n');
|
||
|
|
||
|
while (time_is_after_jiffies(time)) {
|
||
|
if (!(__dcc_getstatus() & DCC_STATUS_TX)) {
|
||
|
#ifdef CONFIG_HVC_DCC_SERIALIZE_SMP
|
||
|
dcc_core0_available = true;
|
||
|
#endif
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_HVC_DCC_SERIALIZE_SMP
|
||
|
|
||
|
static void dcc_put_work_fn(struct work_struct *work);
|
||
|
static void dcc_get_work_fn(struct work_struct *work);
|
||
|
static DECLARE_WORK(dcc_pwork, dcc_put_work_fn);
|
||
|
static DECLARE_WORK(dcc_gwork, dcc_get_work_fn);
|
||
|
static DEFINE_SPINLOCK(dcc_lock);
|
||
|
static DEFINE_KFIFO(inbuf, unsigned char, 128);
|
||
|
static DEFINE_KFIFO(outbuf, unsigned char, 1024);
|
||
|
|
||
|
/*
|
||
|
* Workqueue function that writes the output FIFO to the DCC on core 0.
|
||
|
*/
|
||
|
static void dcc_put_work_fn(struct work_struct *work)
|
||
|
{
|
||
|
unsigned char ch;
|
||
|
unsigned long irqflags;
|
||
|
|
||
|
spin_lock_irqsave(&dcc_lock, irqflags);
|
||
|
|
||
|
/* While there's data in the output FIFO, write it to the DCC */
|
||
|
while (kfifo_get(&outbuf, &ch))
|
||
|
hvc_dcc_put_chars(0, &ch, 1);
|
||
|
|
||
|
/* While we're at it, check for any input characters */
|
||
|
while (!kfifo_is_full(&inbuf)) {
|
||
|
if (!hvc_dcc_get_chars(0, &ch, 1))
|
||
|
break;
|
||
|
kfifo_put(&inbuf, ch);
|
||
|
}
|
||
|
|
||
|
spin_unlock_irqrestore(&dcc_lock, irqflags);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Workqueue function that reads characters from DCC and puts them into the
|
||
|
* input FIFO.
|
||
|
*/
|
||
|
static void dcc_get_work_fn(struct work_struct *work)
|
||
|
{
|
||
|
unsigned char ch;
|
||
|
unsigned long irqflags;
|
||
|
|
||
|
/*
|
||
|
* Read characters from DCC and put them into the input FIFO, as
|
||
|
* long as there is room and we have characters to read.
|
||
|
*/
|
||
|
spin_lock_irqsave(&dcc_lock, irqflags);
|
||
|
|
||
|
while (!kfifo_is_full(&inbuf)) {
|
||
|
if (!hvc_dcc_get_chars(0, &ch, 1))
|
||
|
break;
|
||
|
kfifo_put(&inbuf, ch);
|
||
|
}
|
||
|
spin_unlock_irqrestore(&dcc_lock, irqflags);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Write characters directly to the DCC if we're on core 0 and the FIFO
|
||
|
* is empty, or write them to the FIFO if we're not.
|
||
|
*/
|
||
|
static int hvc_dcc0_put_chars(uint32_t vt, const char *buf,
|
||
|
int count)
|
||
|
{
|
||
|
int len;
|
||
|
unsigned long irqflags;
|
||
|
|
||
|
spin_lock_irqsave(&dcc_lock, irqflags);
|
||
|
if (smp_processor_id() || (!kfifo_is_empty(&outbuf))) {
|
||
|
len = kfifo_in(&outbuf, buf, count);
|
||
|
spin_unlock_irqrestore(&dcc_lock, irqflags);
|
||
|
/*
|
||
|
* We just push data to the output FIFO, so schedule the
|
||
|
* workqueue that will actually write that data to DCC.
|
||
|
*/
|
||
|
schedule_work_on(0, &dcc_pwork);
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we're already on core 0, and the FIFO is empty, then just
|
||
|
* write the data to DCC.
|
||
|
*/
|
||
|
len = hvc_dcc_put_chars(vt, buf, count);
|
||
|
spin_unlock_irqrestore(&dcc_lock, irqflags);
|
||
|
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read characters directly from the DCC if we're on core 0 and the FIFO
|
||
|
* is empty, or read them from the FIFO if we're not.
|
||
|
*/
|
||
|
static int hvc_dcc0_get_chars(uint32_t vt, char *buf, int count)
|
||
|
{
|
||
|
int len;
|
||
|
unsigned long irqflags;
|
||
|
|
||
|
spin_lock_irqsave(&dcc_lock, irqflags);
|
||
|
|
||
|
if (smp_processor_id() || (!kfifo_is_empty(&inbuf))) {
|
||
|
len = kfifo_out(&inbuf, buf, count);
|
||
|
spin_unlock_irqrestore(&dcc_lock, irqflags);
|
||
|
|
||
|
/*
|
||
|
* If the FIFO was empty, there may be characters in the DCC
|
||
|
* that we haven't read yet. Schedule a workqueue to fill
|
||
|
* the input FIFO, so that the next time this function is
|
||
|
* called, we'll have data.
|
||
|
*/
|
||
|
if (!len)
|
||
|
schedule_work_on(0, &dcc_gwork);
|
||
|
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we're already on core 0, and the FIFO is empty, then just
|
||
|
* read the data from DCC.
|
||
|
*/
|
||
|
len = hvc_dcc_get_chars(vt, buf, count);
|
||
|
spin_unlock_irqrestore(&dcc_lock, irqflags);
|
||
|
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
static const struct hv_ops hvc_dcc_get_put_ops = {
|
||
|
.get_chars = hvc_dcc0_get_chars,
|
||
|
.put_chars = hvc_dcc0_put_chars,
|
||
|
};
|
||
|
|
||
|
#else
|
||
|
|
||
|
static const struct hv_ops hvc_dcc_get_put_ops = {
|
||
|
.get_chars = hvc_dcc_get_chars,
|
||
|
.put_chars = hvc_dcc_put_chars,
|
||
|
};
|
||
|
|
||
|
#endif
|
||
|
|
||
|
static int __init hvc_dcc_console_init(void)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
if (!enable || !hvc_dcc_check())
|
||
|
return -ENODEV;
|
||
|
|
||
|
/* Returns -1 if error */
|
||
|
ret = hvc_instantiate(0, 0, &hvc_dcc_get_put_ops);
|
||
|
|
||
|
return ret < 0 ? -ENODEV : 0;
|
||
|
}
|
||
|
console_initcall(hvc_dcc_console_init);
|
||
|
|
||
|
static int __init hvc_dcc_init(void)
|
||
|
{
|
||
|
struct hvc_struct *p;
|
||
|
|
||
|
if (!enable || !hvc_dcc_check())
|
||
|
return -ENODEV;
|
||
|
|
||
|
p = hvc_alloc(0, 0, &hvc_dcc_get_put_ops, 128);
|
||
|
|
||
|
return PTR_ERR_OR_ZERO(p);
|
||
|
}
|
||
|
device_initcall(hvc_dcc_init);
|